Box

Struct Box 

1.36.0 · Source
pub struct Box<T, A = Global>(/* private fields */)
where
    A: Allocator,
    T: ?Sized;
Expand description

A pointer type that uniquely owns a heap allocation of type T.

See the module-level documentation for more.

Implementations§

Source§

impl<A> Box<dyn Any, A>
where A: Allocator,

1.0.0 · Source

pub fn downcast<T>(self) -> Result<Box<T, A>, Box<dyn Any, A>>
where T: Any,

Attempts to downcast the box to a concrete type.

§Examples
use std::any::Any;

fn print_if_string(value: Box<dyn Any>) {
    if let Ok(string) = value.downcast::<String>() {
        println!("String ({}): {}", string.len(), string);
    }
}

let my_string = "Hello World".to_string();
print_if_string(Box::new(my_string));
print_if_string(Box::new(0i8));
Source

pub unsafe fn downcast_unchecked<T>(self) -> Box<T, A>
where T: Any,

🔬This is a nightly-only experimental API. (downcast_unchecked)

Downcasts the box to a concrete type.

For a safe alternative see downcast.

§Examples
#![feature(downcast_unchecked)]

use std::any::Any;

let x: Box<dyn Any> = Box::new(1_usize);

unsafe {
    assert_eq!(*x.downcast_unchecked::<usize>(), 1);
}
§Safety

The contained value must be of type T. Calling this method with the incorrect type is undefined behavior.

Source§

impl<A> Box<dyn Any + Send, A>
where A: Allocator,

1.0.0 · Source

pub fn downcast<T>(self) -> Result<Box<T, A>, Box<dyn Any + Send, A>>
where T: Any,

Attempts to downcast the box to a concrete type.

§Examples
use std::any::Any;

fn print_if_string(value: Box<dyn Any + Send>) {
    if let Ok(string) = value.downcast::<String>() {
        println!("String ({}): {}", string.len(), string);
    }
}

let my_string = "Hello World".to_string();
print_if_string(Box::new(my_string));
print_if_string(Box::new(0i8));
Source

pub unsafe fn downcast_unchecked<T>(self) -> Box<T, A>
where T: Any,

🔬This is a nightly-only experimental API. (downcast_unchecked)

Downcasts the box to a concrete type.

For a safe alternative see downcast.

§Examples
#![feature(downcast_unchecked)]

use std::any::Any;

let x: Box<dyn Any + Send> = Box::new(1_usize);

unsafe {
    assert_eq!(*x.downcast_unchecked::<usize>(), 1);
}
§Safety

The contained value must be of type T. Calling this method with the incorrect type is undefined behavior.

Source§

impl<A> Box<dyn Any + Send + Sync, A>
where A: Allocator,

1.51.0 · Source

pub fn downcast<T>(self) -> Result<Box<T, A>, Box<dyn Any + Send + Sync, A>>
where T: Any,

Attempts to downcast the box to a concrete type.

§Examples
use std::any::Any;

fn print_if_string(value: Box<dyn Any + Send + Sync>) {
    if let Ok(string) = value.downcast::<String>() {
        println!("String ({}): {}", string.len(), string);
    }
}

let my_string = "Hello World".to_string();
print_if_string(Box::new(my_string));
print_if_string(Box::new(0i8));
Source

pub unsafe fn downcast_unchecked<T>(self) -> Box<T, A>
where T: Any,

🔬This is a nightly-only experimental API. (downcast_unchecked)

Downcasts the box to a concrete type.

For a safe alternative see downcast.

§Examples
#![feature(downcast_unchecked)]

use std::any::Any;

let x: Box<dyn Any + Send + Sync> = Box::new(1_usize);

unsafe {
    assert_eq!(*x.downcast_unchecked::<usize>(), 1);
}
§Safety

The contained value must be of type T. Calling this method with the incorrect type is undefined behavior.

Source§

impl<T> Box<T>

1.0.0 · Source

pub fn new(x: T) -> Box<T>

Allocates memory on the heap and then places x into it.

This doesn’t actually allocate if T is zero-sized.

§Examples
let five = Box::new(5);
1.82.0 · Source

pub fn new_uninit() -> Box<MaybeUninit<T>>

Constructs a new box with uninitialized contents.

§Examples
let mut five = Box::<u32>::new_uninit();
// Deferred initialization:
five.write(5);
let five = unsafe { five.assume_init() };

assert_eq!(*five, 5)
1.92.0 · Source

pub fn new_zeroed() -> Box<MaybeUninit<T>>

Constructs a new Box with uninitialized contents, with the memory being filled with 0 bytes.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
let zero = Box::<u32>::new_zeroed();
let zero = unsafe { zero.assume_init() };

assert_eq!(*zero, 0)
1.33.0 · Source

pub fn pin(x: T) -> Pin<Box<T>>

Constructs a new Pin<Box<T>>. If T does not implement Unpin, then x will be pinned in memory and unable to be moved.

Constructing and pinning of the Box can also be done in two steps: Box::pin(x) does the same as Box::into_pin(Box::new(x)). Consider using into_pin if you already have a Box<T>, or if you want to construct a (pinned) Box in a different way than with Box::new.

Source

pub fn try_new(x: T) -> Result<Box<T>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Allocates memory on the heap then places x into it, returning an error if the allocation fails

This doesn’t actually allocate if T is zero-sized.

§Examples
#![feature(allocator_api)]

let five = Box::try_new(5)?;
Source

pub fn try_new_uninit() -> Result<Box<MaybeUninit<T>>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new box with uninitialized contents on the heap, returning an error if the allocation fails

§Examples
#![feature(allocator_api)]

let mut five = Box::<u32>::try_new_uninit()?;
// Deferred initialization:
five.write(5);
let five = unsafe { five.assume_init() };

assert_eq!(*five, 5);
Source

pub fn try_new_zeroed() -> Result<Box<MaybeUninit<T>>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Box with uninitialized contents, with the memory being filled with 0 bytes on the heap

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(allocator_api)]

let zero = Box::<u32>::try_new_zeroed()?;
let zero = unsafe { zero.assume_init() };

assert_eq!(*zero, 0);
Source

pub fn map<U>(this: Box<T>, f: impl FnOnce(T) -> U) -> Box<U>

🔬This is a nightly-only experimental API. (smart_pointer_try_map)

Maps the value in a box, reusing the allocation if possible.

f is called on the value in the box, and the result is returned, also boxed.

Note: this is an associated function, which means that you have to call it as Box::map(b, f) instead of b.map(f). This is so that there is no conflict with a method on the inner type.

§Examples
#![feature(smart_pointer_try_map)]

let b = Box::new(7);
let new = Box::map(b, |i| i + 7);
assert_eq!(*new, 14);
Source

pub fn try_map<R>( this: Box<T>, f: impl FnOnce(T) -> R, ) -> <<R as Try>::Residual as Residual<Box<<R as Try>::Output>>>::TryType
where R: Try, <R as Try>::Residual: Residual<Box<<R as Try>::Output>>,

🔬This is a nightly-only experimental API. (smart_pointer_try_map)

Attempts to map the value in a box, reusing the allocation if possible.

f is called on the value in the box, and if the operation succeeds, the result is returned, also boxed.

Note: this is an associated function, which means that you have to call it as Box::try_map(b, f) instead of b.try_map(f). This is so that there is no conflict with a method on the inner type.

§Examples
#![feature(smart_pointer_try_map)]

let b = Box::new(7);
let new = Box::try_map(b, u32::try_from).unwrap();
assert_eq!(*new, 7);
Source§

impl<T, A> Box<T, A>
where A: Allocator,

Source

pub fn new_in(x: T, alloc: A) -> Box<T, A>
where A: Allocator,

🔬This is a nightly-only experimental API. (allocator_api)

Allocates memory in the given allocator then places x into it.

This doesn’t actually allocate if T is zero-sized.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let five = Box::new_in(5, System);
Source

pub fn try_new_in(x: T, alloc: A) -> Result<Box<T, A>, AllocError>
where A: Allocator,

🔬This is a nightly-only experimental API. (allocator_api)

Allocates memory in the given allocator then places x into it, returning an error if the allocation fails

This doesn’t actually allocate if T is zero-sized.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let five = Box::try_new_in(5, System)?;
Source

pub fn new_uninit_in(alloc: A) -> Box<MaybeUninit<T>, A>
where A: Allocator,

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new box with uninitialized contents in the provided allocator.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let mut five = Box::<u32, _>::new_uninit_in(System);
// Deferred initialization:
five.write(5);
let five = unsafe { five.assume_init() };

assert_eq!(*five, 5)
Source

pub fn try_new_uninit_in(alloc: A) -> Result<Box<MaybeUninit<T>, A>, AllocError>
where A: Allocator,

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new box with uninitialized contents in the provided allocator, returning an error if the allocation fails

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let mut five = Box::<u32, _>::try_new_uninit_in(System)?;
// Deferred initialization:
five.write(5);
let five = unsafe { five.assume_init() };

assert_eq!(*five, 5);
Source

pub fn new_zeroed_in(alloc: A) -> Box<MaybeUninit<T>, A>
where A: Allocator,

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Box with uninitialized contents, with the memory being filled with 0 bytes in the provided allocator.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let zero = Box::<u32, _>::new_zeroed_in(System);
let zero = unsafe { zero.assume_init() };

assert_eq!(*zero, 0)
Source

pub fn try_new_zeroed_in(alloc: A) -> Result<Box<MaybeUninit<T>, A>, AllocError>
where A: Allocator,

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Box with uninitialized contents, with the memory being filled with 0 bytes in the provided allocator, returning an error if the allocation fails,

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let zero = Box::<u32, _>::try_new_zeroed_in(System)?;
let zero = unsafe { zero.assume_init() };

assert_eq!(*zero, 0);
Source

pub fn pin_in(x: T, alloc: A) -> Pin<Box<T, A>>
where A: 'static + Allocator,

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new Pin<Box<T, A>>. If T does not implement Unpin, then x will be pinned in memory and unable to be moved.

Constructing and pinning of the Box can also be done in two steps: Box::pin_in(x, alloc) does the same as Box::into_pin(Box::new_in(x, alloc)). Consider using into_pin if you already have a Box<T, A>, or if you want to construct a (pinned) Box in a different way than with Box::new_in.

Source

pub fn into_boxed_slice(boxed: Box<T, A>) -> Box<[T], A>

🔬This is a nightly-only experimental API. (box_into_boxed_slice)

Converts a Box<T> into a Box<[T]>

This conversion does not allocate on the heap and happens in place.

Source

pub fn into_inner(boxed: Box<T, A>) -> T

🔬This is a nightly-only experimental API. (box_into_inner)

Consumes the Box, returning the wrapped value.

§Examples
#![feature(box_into_inner)]

let c = Box::new(5);

assert_eq!(Box::into_inner(c), 5);
Source

pub fn take(boxed: Box<T, A>) -> (T, Box<MaybeUninit<T>, A>)

🔬This is a nightly-only experimental API. (box_take)

Consumes the Box without consuming its allocation, returning the wrapped value and a Box to the uninitialized memory where the wrapped value used to live.

This can be used together with write to reuse the allocation for multiple boxed values.

§Examples
#![feature(box_take)]

let c = Box::new(5);

// take the value out of the box
let (value, uninit) = Box::take(c);
assert_eq!(value, 5);

// reuse the box for a second value
let c = Box::write(uninit, 6);
assert_eq!(*c, 6);
Source§

impl<T> Box<T>
where T: CloneToUninit + ?Sized,

Source

pub fn clone_from_ref(src: &T) -> Box<T>

🔬This is a nightly-only experimental API. (clone_from_ref)

Allocates memory on the heap then clones src into it.

This doesn’t actually allocate if src is zero-sized.

§Examples
#![feature(clone_from_ref)]

let hello: Box<str> = Box::clone_from_ref("hello");
Source

pub fn try_clone_from_ref(src: &T) -> Result<Box<T>, AllocError>

🔬This is a nightly-only experimental API. (clone_from_ref)

Allocates memory on the heap then clones src into it, returning an error if allocation fails.

This doesn’t actually allocate if src is zero-sized.

§Examples
#![feature(clone_from_ref)]
#![feature(allocator_api)]

let hello: Box<str> = Box::try_clone_from_ref("hello")?;
Source§

impl<T, A> Box<T, A>
where T: CloneToUninit + ?Sized, A: Allocator,

Source

pub fn clone_from_ref_in(src: &T, alloc: A) -> Box<T, A>

🔬This is a nightly-only experimental API. (clone_from_ref)

Allocates memory in the given allocator then clones src into it.

This doesn’t actually allocate if src is zero-sized.

§Examples
#![feature(clone_from_ref)]
#![feature(allocator_api)]

use std::alloc::System;

let hello: Box<str, System> = Box::clone_from_ref_in("hello", System);
Source

pub fn try_clone_from_ref_in(src: &T, alloc: A) -> Result<Box<T, A>, AllocError>

🔬This is a nightly-only experimental API. (clone_from_ref)

Allocates memory in the given allocator then clones src into it, returning an error if allocation fails.

This doesn’t actually allocate if src is zero-sized.

§Examples
#![feature(clone_from_ref)]
#![feature(allocator_api)]

use std::alloc::System;

let hello: Box<str, System> = Box::try_clone_from_ref_in("hello", System)?;
Source§

impl<T> Box<[T]>

1.82.0 · Source

pub fn new_uninit_slice(len: usize) -> Box<[MaybeUninit<T>]>

Constructs a new boxed slice with uninitialized contents.

§Examples
let mut values = Box::<[u32]>::new_uninit_slice(3);
// Deferred initialization:
values[0].write(1);
values[1].write(2);
values[2].write(3);
let values = unsafe { values.assume_init() };

assert_eq!(*values, [1, 2, 3])
1.92.0 · Source

pub fn new_zeroed_slice(len: usize) -> Box<[MaybeUninit<T>]>

Constructs a new boxed slice with uninitialized contents, with the memory being filled with 0 bytes.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
let values = Box::<[u32]>::new_zeroed_slice(3);
let values = unsafe { values.assume_init() };

assert_eq!(*values, [0, 0, 0])
Source

pub fn try_new_uninit_slice( len: usize, ) -> Result<Box<[MaybeUninit<T>]>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new boxed slice with uninitialized contents. Returns an error if the allocation fails.

§Examples
#![feature(allocator_api)]

let mut values = Box::<[u32]>::try_new_uninit_slice(3)?;
// Deferred initialization:
values[0].write(1);
values[1].write(2);
values[2].write(3);
let values = unsafe { values.assume_init() };

assert_eq!(*values, [1, 2, 3]);
Source

pub fn try_new_zeroed_slice( len: usize, ) -> Result<Box<[MaybeUninit<T>]>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new boxed slice with uninitialized contents, with the memory being filled with 0 bytes. Returns an error if the allocation fails.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(allocator_api)]

let values = Box::<[u32]>::try_new_zeroed_slice(3)?;
let values = unsafe { values.assume_init() };

assert_eq!(*values, [0, 0, 0]);
Source

pub fn into_array<const N: usize>(self) -> Option<Box<[T; N]>>

🔬This is a nightly-only experimental API. (alloc_slice_into_array)

Converts the boxed slice into a boxed array.

This operation does not reallocate; the underlying array of the slice is simply reinterpreted as an array type.

If N is not exactly equal to the length of self, then this method returns None.

Source§

impl<T, A> Box<[T], A>
where A: Allocator,

Source

pub fn new_uninit_slice_in(len: usize, alloc: A) -> Box<[MaybeUninit<T>], A>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new boxed slice with uninitialized contents in the provided allocator.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let mut values = Box::<[u32], _>::new_uninit_slice_in(3, System);
// Deferred initialization:
values[0].write(1);
values[1].write(2);
values[2].write(3);
let values = unsafe { values.assume_init() };

assert_eq!(*values, [1, 2, 3])
Source

pub fn new_zeroed_slice_in(len: usize, alloc: A) -> Box<[MaybeUninit<T>], A>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new boxed slice with uninitialized contents in the provided allocator, with the memory being filled with 0 bytes.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let values = Box::<[u32], _>::new_zeroed_slice_in(3, System);
let values = unsafe { values.assume_init() };

assert_eq!(*values, [0, 0, 0])
Source

pub fn try_new_uninit_slice_in( len: usize, alloc: A, ) -> Result<Box<[MaybeUninit<T>], A>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new boxed slice with uninitialized contents in the provided allocator. Returns an error if the allocation fails.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let mut values = Box::<[u32], _>::try_new_uninit_slice_in(3, System)?;
// Deferred initialization:
values[0].write(1);
values[1].write(2);
values[2].write(3);
let values = unsafe { values.assume_init() };

assert_eq!(*values, [1, 2, 3]);
Source

pub fn try_new_zeroed_slice_in( len: usize, alloc: A, ) -> Result<Box<[MaybeUninit<T>], A>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a new boxed slice with uninitialized contents in the provided allocator, with the memory being filled with 0 bytes. Returns an error if the allocation fails.

See MaybeUninit::zeroed for examples of correct and incorrect usage of this method.

§Examples
#![feature(allocator_api)]

use std::alloc::System;

let values = Box::<[u32], _>::try_new_zeroed_slice_in(3, System)?;
let values = unsafe { values.assume_init() };

assert_eq!(*values, [0, 0, 0]);
Source§

impl<T, A> Box<MaybeUninit<T>, A>
where A: Allocator,

1.82.0 · Source

pub unsafe fn assume_init(self) -> Box<T, A>

Converts to Box<T, A>.

§Safety

As with MaybeUninit::assume_init, it is up to the caller to guarantee that the value really is in an initialized state. Calling this when the content is not yet fully initialized causes immediate undefined behavior.

§Examples
let mut five = Box::<u32>::new_uninit();
// Deferred initialization:
five.write(5);
let five: Box<u32> = unsafe { five.assume_init() };

assert_eq!(*five, 5)
1.87.0 · Source

pub fn write(boxed: Box<MaybeUninit<T>, A>, value: T) -> Box<T, A>

Writes the value and converts to Box<T, A>.

This method converts the box similarly to Box::assume_init but writes value into it before conversion thus guaranteeing safety. In some scenarios use of this method may improve performance because the compiler may be able to optimize copying from stack.

§Examples
let big_box = Box::<[usize; 1024]>::new_uninit();

let mut array = [0; 1024];
for (i, place) in array.iter_mut().enumerate() {
    *place = i;
}

// The optimizer may be able to elide this copy, so previous code writes
// to heap directly.
let big_box = Box::write(big_box, array);

for (i, x) in big_box.iter().enumerate() {
    assert_eq!(*x, i);
}
Source§

impl<T, A> Box<[MaybeUninit<T>], A>
where A: Allocator,

1.82.0 · Source

pub unsafe fn assume_init(self) -> Box<[T], A>

Converts to Box<[T], A>.

§Safety

As with MaybeUninit::assume_init, it is up to the caller to guarantee that the values really are in an initialized state. Calling this when the content is not yet fully initialized causes immediate undefined behavior.

§Examples
let mut values = Box::<[u32]>::new_uninit_slice(3);
// Deferred initialization:
values[0].write(1);
values[1].write(2);
values[2].write(3);
let values = unsafe { values.assume_init() };

assert_eq!(*values, [1, 2, 3])
Source§

impl<T> Box<T>
where T: ?Sized,

1.4.0 · Source

pub unsafe fn from_raw(raw: *mut T) -> Box<T>

Constructs a box from a raw pointer.

After calling this function, the raw pointer is owned by the resulting Box. Specifically, the Box destructor will call the destructor of T and free the allocated memory. For this to be safe, the memory must have been allocated in accordance with the memory layout used by Box .

§Safety

This function is unsafe because improper use may lead to memory problems. For example, a double-free may occur if the function is called twice on the same raw pointer.

The raw pointer must point to a block of memory allocated by the global allocator.

The safety conditions are described in the memory layout section.

§Examples

Recreate a Box which was previously converted to a raw pointer using Box::into_raw:

let x = Box::new(5);
let ptr = Box::into_raw(x);
let x = unsafe { Box::from_raw(ptr) };

Manually create a Box from scratch by using the global allocator:

use std::alloc::{alloc, Layout};

unsafe {
    let ptr = alloc(Layout::new::<i32>()) as *mut i32;
    // In general .write is required to avoid attempting to destruct
    // the (uninitialized) previous contents of `ptr`, though for this
    // simple example `*ptr = 5` would have worked as well.
    ptr.write(5);
    let x = Box::from_raw(ptr);
}
Source

pub unsafe fn from_non_null(ptr: NonNull<T>) -> Box<T>

🔬This is a nightly-only experimental API. (box_vec_non_null)

Constructs a box from a NonNull pointer.

After calling this function, the NonNull pointer is owned by the resulting Box. Specifically, the Box destructor will call the destructor of T and free the allocated memory. For this to be safe, the memory must have been allocated in accordance with the memory layout used by Box .

§Safety

This function is unsafe because improper use may lead to memory problems. For example, a double-free may occur if the function is called twice on the same NonNull pointer.

The non-null pointer must point to a block of memory allocated by the global allocator.

The safety conditions are described in the memory layout section.

§Examples

Recreate a Box which was previously converted to a NonNull pointer using Box::into_non_null:

#![feature(box_vec_non_null)]

let x = Box::new(5);
let non_null = Box::into_non_null(x);
let x = unsafe { Box::from_non_null(non_null) };

Manually create a Box from scratch by using the global allocator:

#![feature(box_vec_non_null)]

use std::alloc::{alloc, Layout};
use std::ptr::NonNull;

unsafe {
    let non_null = NonNull::new(alloc(Layout::new::<i32>()).cast::<i32>())
        .expect("allocation failed");
    // In general .write is required to avoid attempting to destruct
    // the (uninitialized) previous contents of `non_null`.
    non_null.write(5);
    let x = Box::from_non_null(non_null);
}
1.4.0 · Source

pub fn into_raw(b: Box<T>) -> *mut T

Consumes the Box, returning a wrapped raw pointer.

The pointer will be properly aligned and non-null.

After calling this function, the caller is responsible for the memory previously managed by the Box. In particular, the caller should properly destroy T and release the memory, taking into account the memory layout used by Box. The easiest way to do this is to convert the raw pointer back into a Box with the Box::from_raw function, allowing the Box destructor to perform the cleanup.

Note: this is an associated function, which means that you have to call it as Box::into_raw(b) instead of b.into_raw(). This is so that there is no conflict with a method on the inner type.

§Examples

Converting the raw pointer back into a Box with Box::from_raw for automatic cleanup:

let x = Box::new(String::from("Hello"));
let ptr = Box::into_raw(x);
let x = unsafe { Box::from_raw(ptr) };

Manual cleanup by explicitly running the destructor and deallocating the memory:

use std::alloc::{dealloc, Layout};
use std::ptr;

let x = Box::new(String::from("Hello"));
let ptr = Box::into_raw(x);
unsafe {
    ptr::drop_in_place(ptr);
    dealloc(ptr as *mut u8, Layout::new::<String>());
}

Note: This is equivalent to the following:

let x = Box::new(String::from("Hello"));
let ptr = Box::into_raw(x);
unsafe {
    drop(Box::from_raw(ptr));
}
Source

pub fn into_non_null(b: Box<T>) -> NonNull<T>

🔬This is a nightly-only experimental API. (box_vec_non_null)

Consumes the Box, returning a wrapped NonNull pointer.

The pointer will be properly aligned.

After calling this function, the caller is responsible for the memory previously managed by the Box. In particular, the caller should properly destroy T and release the memory, taking into account the memory layout used by Box. The easiest way to do this is to convert the NonNull pointer back into a Box with the Box::from_non_null function, allowing the Box destructor to perform the cleanup.

Note: this is an associated function, which means that you have to call it as Box::into_non_null(b) instead of b.into_non_null(). This is so that there is no conflict with a method on the inner type.

§Examples

Converting the NonNull pointer back into a Box with Box::from_non_null for automatic cleanup:

#![feature(box_vec_non_null)]

let x = Box::new(String::from("Hello"));
let non_null = Box::into_non_null(x);
let x = unsafe { Box::from_non_null(non_null) };

Manual cleanup by explicitly running the destructor and deallocating the memory:

#![feature(box_vec_non_null)]

use std::alloc::{dealloc, Layout};

let x = Box::new(String::from("Hello"));
let non_null = Box::into_non_null(x);
unsafe {
    non_null.drop_in_place();
    dealloc(non_null.as_ptr().cast::<u8>(), Layout::new::<String>());
}

Note: This is equivalent to the following:

#![feature(box_vec_non_null)]

let x = Box::new(String::from("Hello"));
let non_null = Box::into_non_null(x);
unsafe {
    drop(Box::from_non_null(non_null));
}
Source§

impl<T, A> Box<T, A>
where A: Allocator, T: ?Sized,

Source

pub unsafe fn from_raw_in(raw: *mut T, alloc: A) -> Box<T, A>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a box from a raw pointer in the given allocator.

After calling this function, the raw pointer is owned by the resulting Box. Specifically, the Box destructor will call the destructor of T and free the allocated memory. For this to be safe, the memory must have been allocated in accordance with the memory layout used by Box .

§Safety

This function is unsafe because improper use may lead to memory problems. For example, a double-free may occur if the function is called twice on the same raw pointer.

The raw pointer must point to a block of memory allocated by alloc.

§Examples

Recreate a Box which was previously converted to a raw pointer using Box::into_raw_with_allocator:

#![feature(allocator_api)]

use std::alloc::System;

let x = Box::new_in(5, System);
let (ptr, alloc) = Box::into_raw_with_allocator(x);
let x = unsafe { Box::from_raw_in(ptr, alloc) };

Manually create a Box from scratch by using the system allocator:

#![feature(allocator_api, slice_ptr_get)]

use std::alloc::{Allocator, Layout, System};

unsafe {
    let ptr = System.allocate(Layout::new::<i32>())?.as_mut_ptr() as *mut i32;
    // In general .write is required to avoid attempting to destruct
    // the (uninitialized) previous contents of `ptr`, though for this
    // simple example `*ptr = 5` would have worked as well.
    ptr.write(5);
    let x = Box::from_raw_in(ptr, System);
}
Source

pub unsafe fn from_non_null_in(raw: NonNull<T>, alloc: A) -> Box<T, A>

🔬This is a nightly-only experimental API. (allocator_api)

Constructs a box from a NonNull pointer in the given allocator.

After calling this function, the NonNull pointer is owned by the resulting Box. Specifically, the Box destructor will call the destructor of T and free the allocated memory. For this to be safe, the memory must have been allocated in accordance with the memory layout used by Box .

§Safety

This function is unsafe because improper use may lead to memory problems. For example, a double-free may occur if the function is called twice on the same raw pointer.

The non-null pointer must point to a block of memory allocated by alloc.

§Examples

Recreate a Box which was previously converted to a NonNull pointer using Box::into_non_null_with_allocator:

#![feature(allocator_api, box_vec_non_null)]

use std::alloc::System;

let x = Box::new_in(5, System);
let (non_null, alloc) = Box::into_non_null_with_allocator(x);
let x = unsafe { Box::from_non_null_in(non_null, alloc) };

Manually create a Box from scratch by using the system allocator:

#![feature(allocator_api, box_vec_non_null, slice_ptr_get)]

use std::alloc::{Allocator, Layout, System};

unsafe {
    let non_null = System.allocate(Layout::new::<i32>())?.cast::<i32>();
    // In general .write is required to avoid attempting to destruct
    // the (uninitialized) previous contents of `non_null`.
    non_null.write(5);
    let x = Box::from_non_null_in(non_null, System);
}
Source

pub fn into_raw_with_allocator(b: Box<T, A>) -> (*mut T, A)

🔬This is a nightly-only experimental API. (allocator_api)

Consumes the Box, returning a wrapped raw pointer and the allocator.

The pointer will be properly aligned and non-null.

After calling this function, the caller is responsible for the memory previously managed by the Box. In particular, the caller should properly destroy T and release the memory, taking into account the memory layout used by Box. The easiest way to do this is to convert the raw pointer back into a Box with the Box::from_raw_in function, allowing the Box destructor to perform the cleanup.

Note: this is an associated function, which means that you have to call it as Box::into_raw_with_allocator(b) instead of b.into_raw_with_allocator(). This is so that there is no conflict with a method on the inner type.

§Examples

Converting the raw pointer back into a Box with Box::from_raw_in for automatic cleanup:

#![feature(allocator_api)]

use std::alloc::System;

let x = Box::new_in(String::from("Hello"), System);
let (ptr, alloc) = Box::into_raw_with_allocator(x);
let x = unsafe { Box::from_raw_in(ptr, alloc) };

Manual cleanup by explicitly running the destructor and deallocating the memory:

#![feature(allocator_api)]

use std::alloc::{Allocator, Layout, System};
use std::ptr::{self, NonNull};

let x = Box::new_in(String::from("Hello"), System);
let (ptr, alloc) = Box::into_raw_with_allocator(x);
unsafe {
    ptr::drop_in_place(ptr);
    let non_null = NonNull::new_unchecked(ptr);
    alloc.deallocate(non_null.cast(), Layout::new::<String>());
}
Source

pub fn into_non_null_with_allocator(b: Box<T, A>) -> (NonNull<T>, A)

🔬This is a nightly-only experimental API. (allocator_api)

Consumes the Box, returning a wrapped NonNull pointer and the allocator.

The pointer will be properly aligned.

After calling this function, the caller is responsible for the memory previously managed by the Box. In particular, the caller should properly destroy T and release the memory, taking into account the memory layout used by Box. The easiest way to do this is to convert the NonNull pointer back into a Box with the Box::from_non_null_in function, allowing the Box destructor to perform the cleanup.

Note: this is an associated function, which means that you have to call it as Box::into_non_null_with_allocator(b) instead of b.into_non_null_with_allocator(). This is so that there is no conflict with a method on the inner type.

§Examples

Converting the NonNull pointer back into a Box with Box::from_non_null_in for automatic cleanup:

#![feature(allocator_api, box_vec_non_null)]

use std::alloc::System;

let x = Box::new_in(String::from("Hello"), System);
let (non_null, alloc) = Box::into_non_null_with_allocator(x);
let x = unsafe { Box::from_non_null_in(non_null, alloc) };

Manual cleanup by explicitly running the destructor and deallocating the memory:

#![feature(allocator_api, box_vec_non_null)]

use std::alloc::{Allocator, Layout, System};

let x = Box::new_in(String::from("Hello"), System);
let (non_null, alloc) = Box::into_non_null_with_allocator(x);
unsafe {
    non_null.drop_in_place();
    alloc.deallocate(non_null.cast::<u8>(), Layout::new::<String>());
}
Source

pub fn as_mut_ptr(b: &mut Box<T, A>) -> *mut T

🔬This is a nightly-only experimental API. (box_as_ptr)

Returns a raw mutable pointer to the Box’s contents.

The caller must ensure that the Box outlives the pointer this function returns, or else it will end up dangling.

This method guarantees that for the purpose of the aliasing model, this method does not materialize a reference to the underlying memory, and thus the returned pointer will remain valid when mixed with other calls to as_ptr and as_mut_ptr. Note that calling other methods that materialize references to the memory may still invalidate this pointer. See the example below for how this guarantee can be used.

§Examples

Due to the aliasing guarantee, the following code is legal:

#![feature(box_as_ptr)]

unsafe {
    let mut b = Box::new(0);
    let ptr1 = Box::as_mut_ptr(&mut b);
    ptr1.write(1);
    let ptr2 = Box::as_mut_ptr(&mut b);
    ptr2.write(2);
    // Notably, the write to `ptr2` did *not* invalidate `ptr1`:
    ptr1.write(3);
}
Source

pub fn as_ptr(b: &Box<T, A>) -> *const T

🔬This is a nightly-only experimental API. (box_as_ptr)

Returns a raw pointer to the Box’s contents.

The caller must ensure that the Box outlives the pointer this function returns, or else it will end up dangling.

The caller must also ensure that the memory the pointer (non-transitively) points to is never written to (except inside an UnsafeCell) using this pointer or any pointer derived from it. If you need to mutate the contents of the Box, use as_mut_ptr.

This method guarantees that for the purpose of the aliasing model, this method does not materialize a reference to the underlying memory, and thus the returned pointer will remain valid when mixed with other calls to as_ptr and as_mut_ptr. Note that calling other methods that materialize mutable references to the memory, as well as writing to this memory, may still invalidate this pointer. See the example below for how this guarantee can be used.

§Examples

Due to the aliasing guarantee, the following code is legal:

#![feature(box_as_ptr)]

unsafe {
    let mut v = Box::new(0);
    let ptr1 = Box::as_ptr(&v);
    let ptr2 = Box::as_mut_ptr(&mut v);
    let _val = ptr2.read();
    // No write to this memory has happened yet, so `ptr1` is still valid.
    let _val = ptr1.read();
    // However, once we do a write...
    ptr2.write(1);
    // ... `ptr1` is no longer valid.
    // This would be UB: let _val = ptr1.read();
}
Source

pub fn allocator(b: &Box<T, A>) -> &A

🔬This is a nightly-only experimental API. (allocator_api)

Returns a reference to the underlying allocator.

Note: this is an associated function, which means that you have to call it as Box::allocator(&b) instead of b.allocator(). This is so that there is no conflict with a method on the inner type.

1.26.0 · Source

pub fn leak<'a>(b: Box<T, A>) -> &'a mut T
where A: 'a,

Consumes and leaks the Box, returning a mutable reference, &'a mut T.

Note that the type T must outlive the chosen lifetime 'a. If the type has only static references, or none at all, then this may be chosen to be 'static.

This function is mainly useful for data that lives for the remainder of the program’s life. Dropping the returned reference will cause a memory leak. If this is not acceptable, the reference should first be wrapped with the Box::from_raw function producing a Box. This Box can then be dropped which will properly destroy T and release the allocated memory.

Note: this is an associated function, which means that you have to call it as Box::leak(b) instead of b.leak(). This is so that there is no conflict with a method on the inner type.

§Examples

Simple usage:

let x = Box::new(41);
let static_ref: &'static mut usize = Box::leak(x);
*static_ref += 1;
assert_eq!(*static_ref, 42);

Unsized data:

let x = vec![1, 2, 3].into_boxed_slice();
let static_ref = Box::leak(x);
static_ref[0] = 4;
assert_eq!(*static_ref, [4, 2, 3]);
1.63.0 · Source

pub fn into_pin(boxed: Box<T, A>) -> Pin<Box<T, A>>
where A: 'static,

Converts a Box<T> into a Pin<Box<T>>. If T does not implement Unpin, then *boxed will be pinned in memory and unable to be moved.

This conversion does not allocate on the heap and happens in place.

This is also available via From.

Constructing and pinning a Box with Box::into_pin(Box::new(x)) can also be written more concisely using Box::pin(x). This into_pin method is useful if you already have a Box<T>, or you are constructing a (pinned) Box in a different way than with Box::new.

§Notes

It’s not recommended that crates add an impl like From<Box<T>> for Pin<T>, as it’ll introduce an ambiguity when calling Pin::from. A demonstration of such a poor impl is shown below.

struct Foo; // A type defined in this crate.
impl From<Box<()>> for Pin<Foo> {
    fn from(_: Box<()>) -> Pin<Foo> {
        Pin::new(Foo)
    }
}

let foo = Box::new(());
let bar = Pin::from(foo);

Trait Implementations§

Source§

impl<T, A> Allocator for Box<T, A>
where T: Allocator + ?Sized, A: Allocator,

Source§

fn allocate(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)
Attempts to allocate a block of memory. Read more
Source§

fn allocate_zeroed(&self, layout: Layout) -> Result<NonNull<[u8]>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)
Behaves like allocate, but also ensures that the returned memory is zero-initialized. Read more
Source§

unsafe fn deallocate(&self, ptr: NonNull<u8>, layout: Layout)

🔬This is a nightly-only experimental API. (allocator_api)
Deallocates the memory referenced by ptr. Read more
Source§

unsafe fn grow( &self, ptr: NonNull<u8>, old_layout: Layout, new_layout: Layout, ) -> Result<NonNull<[u8]>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)
Attempts to extend the memory block. Read more
Source§

unsafe fn grow_zeroed( &self, ptr: NonNull<u8>, old_layout: Layout, new_layout: Layout, ) -> Result<NonNull<[u8]>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)
Behaves like grow, but also ensures that the new contents are set to zero before being returned. Read more
Source§

unsafe fn shrink( &self, ptr: NonNull<u8>, old_layout: Layout, new_layout: Layout, ) -> Result<NonNull<[u8]>, AllocError>

🔬This is a nightly-only experimental API. (allocator_api)
Attempts to shrink the memory block. Read more
Source§

fn by_ref(&self) -> &Self
where Self: Sized,

🔬This is a nightly-only experimental API. (allocator_api)
Creates a “by reference” adapter for this instance of Allocator. Read more
§

impl<T> Args for Box<T>
where T: Args,

§

fn augment_args(cmd: Command) -> Command

Append to [Command] so it can instantiate Self via [FromArgMatches::from_arg_matches_mut] Read more
§

fn augment_args_for_update(cmd: Command) -> Command

Append to [Command] so it can instantiate self via [FromArgMatches::update_from_arg_matches_mut] Read more
§

fn group_id() -> Option<Id>

Report the [ArgGroup::id][crate::ArgGroup::id] for this set of arguments
1.71.0 · Source§

impl<T> AsHandle for Box<T>
where T: AsHandle + ?Sized,

Source§

fn as_handle(&self) -> BorrowedHandle<'_>

Borrows the handle. Read more
1.5.0 · Source§

impl<T, A> AsMut<T> for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

fn as_mut(&mut self) -> &mut T

Converts this type into a mutable reference of the (usually inferred) input type.
1.5.0 · Source§

impl<T, A> AsRef<T> for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

fn as_ref(&self) -> &T

Converts this type into a shared reference of the (usually inferred) input type.
1.71.0 · Source§

impl<T> AsSocket for Box<T>
where T: AsSocket,

Source§

fn as_socket(&self) -> BorrowedSocket<'_>

Borrows the socket.
§

impl<T> AsyncBufRead for Box<T>
where T: AsyncBufRead + Unpin + ?Sized,

§

fn poll_fill_buf( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, ) -> Poll<Result<&[u8], Error>>

Attempt to return the contents of the internal buffer, filling it with more data from the inner reader if it is empty. Read more
§

fn consume(self: Pin<&mut Box<T>>, amt: usize)

Tells this buffer that amt bytes have been consumed from the buffer, so they should no longer be returned in calls to poll_read. Read more
§

impl<T> AsyncBufRead for Box<T>
where T: AsyncBufRead + Unpin + ?Sized,

§

fn poll_fill_buf( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, ) -> Poll<Result<&[u8], Error>>

Attempts to return the contents of the internal buffer, filling it with more data from the inner reader if it is empty. Read more
§

fn consume(self: Pin<&mut Box<T>>, amt: usize)

Tells this buffer that amt bytes have been consumed from the buffer, so they should no longer be returned in calls to poll_read. Read more
1.85.0 · Source§

impl<Args, F, A> AsyncFn<Args> for Box<F, A>
where Args: Tuple, F: AsyncFn<Args> + ?Sized, A: Allocator,

Source§

extern "rust-call" fn async_call( &self, args: Args, ) -> <Box<F, A> as AsyncFnMut<Args>>::CallRefFuture<'_>

🔬This is a nightly-only experimental API. (async_fn_traits)
Call the AsyncFn, returning a future which may borrow from the called closure.
1.85.0 · Source§

impl<Args, F, A> AsyncFnMut<Args> for Box<F, A>
where Args: Tuple, F: AsyncFnMut<Args> + ?Sized, A: Allocator,

Source§

type CallRefFuture<'a> = <F as AsyncFnMut<Args>>::CallRefFuture<'a> where Box<F, A>: 'a

🔬This is a nightly-only experimental API. (async_fn_traits)
Source§

extern "rust-call" fn async_call_mut( &mut self, args: Args, ) -> <Box<F, A> as AsyncFnMut<Args>>::CallRefFuture<'_>

🔬This is a nightly-only experimental API. (async_fn_traits)
Call the AsyncFnMut, returning a future which may borrow from the called closure.
1.85.0 · Source§

impl<Args, F, A> AsyncFnOnce<Args> for Box<F, A>
where Args: Tuple, F: AsyncFnOnce<Args> + ?Sized, A: Allocator,

Source§

type Output = <F as AsyncFnOnce<Args>>::Output

🔬This is a nightly-only experimental API. (async_fn_traits)
Output type of the called closure’s future.
Source§

type CallOnceFuture = <F as AsyncFnOnce<Args>>::CallOnceFuture

🔬This is a nightly-only experimental API. (async_fn_traits)
Future returned by AsyncFnOnce::async_call_once.
Source§

extern "rust-call" fn async_call_once( self, args: Args, ) -> <Box<F, A> as AsyncFnOnce<Args>>::CallOnceFuture

🔬This is a nightly-only experimental API. (async_fn_traits)
Call the AsyncFnOnce, returning a future which may move out of the called closure.
Source§

impl<S> AsyncIterator for Box<S>
where S: AsyncIterator + Unpin + ?Sized,

Source§

type Item = <S as AsyncIterator>::Item

🔬This is a nightly-only experimental API. (async_iterator)
The type of items yielded by the async iterator.
Source§

fn poll_next( self: Pin<&mut Box<S>>, cx: &mut Context<'_>, ) -> Poll<Option<<Box<S> as AsyncIterator>::Item>>

🔬This is a nightly-only experimental API. (async_iterator)
Attempts to pull out the next value of this async iterator, registering the current task for wakeup if the value is not yet available, and returning None if the async iterator is exhausted. Read more
Source§

fn size_hint(&self) -> (usize, Option<usize>)

🔬This is a nightly-only experimental API. (async_iterator)
Returns the bounds on the remaining length of the async iterator. Read more
Source§

impl<R, A> AsyncRead for Box<R, A>
where R: AsyncRead + ?Sized, A: Allocator,

Source§

async fn read<T>(&mut self, buf: T) -> BufResult<usize, T>
where T: IoBufMut,

Read some bytes from this source into the IoBufMut buffer and return a BufResult, consisting of the buffer and a usize indicating how many bytes were read. Read more
Source§

async fn read_vectored<T>(&mut self, buf: T) -> BufResult<usize, T>

Like read, except that it reads into a type implements IoVectoredBufMut. Read more
§

impl<T> AsyncRead for Box<T>
where T: AsyncRead + Unpin + ?Sized,

§

fn poll_read( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, buf: &mut [u8], ) -> Poll<Result<usize, Error>>

Attempt to read from the AsyncRead into buf. Read more
§

fn poll_read_vectored( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, bufs: &mut [IoSliceMut<'_>], ) -> Poll<Result<usize, Error>>

Attempt to read from the AsyncRead into bufs using vectored IO operations. Read more
§

impl<T> AsyncRead for Box<T>
where T: AsyncRead + Unpin + ?Sized,

§

fn poll_read( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, buf: &mut ReadBuf<'_>, ) -> Poll<Result<(), Error>>

Attempts to read from the AsyncRead into buf. Read more
Source§

impl<R, A> AsyncReadAt for Box<R, A>
where R: AsyncReadAt + ?Sized, A: Allocator,

Available on crate feature allocator_api only.
Source§

async fn read_at<T>(&self, buf: T, pos: u64) -> BufResult<usize, T>
where T: IoBufMut,

Like AsyncRead::read, except that it reads at a specified position.
Source§

async fn read_vectored_at<T>(&self, buf: T, pos: u64) -> BufResult<usize, T>

Like AsyncRead::read_vectored, except that it reads at a specified position.
§

impl<T> AsyncSeek for Box<T>
where T: AsyncSeek + Unpin + ?Sized,

§

fn poll_seek( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, pos: SeekFrom, ) -> Poll<Result<u64, Error>>

Attempt to seek to an offset, in bytes, in a stream. Read more
§

impl<T> AsyncSeek for Box<T>
where T: AsyncSeek + Unpin + ?Sized,

§

fn start_seek(self: Pin<&mut Box<T>>, pos: SeekFrom) -> Result<(), Error>

Attempts to seek to an offset, in bytes, in a stream. Read more
§

fn poll_complete( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, ) -> Poll<Result<u64, Error>>

Waits for a seek operation to complete. Read more
§

impl<T> AsyncWrite for Box<T>
where T: AsyncWrite + Unpin + ?Sized,

§

fn poll_write( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, buf: &[u8], ) -> Poll<Result<usize, Error>>

Attempt to write bytes from buf into the object. Read more
§

fn poll_write_vectored( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, bufs: &[IoSlice<'_>], ) -> Poll<Result<usize, Error>>

Attempt to write bytes from bufs into the object using vectored IO operations. Read more
§

fn poll_flush( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, ) -> Poll<Result<(), Error>>

Attempt to flush the object, ensuring that any buffered data reach their destination. Read more
§

fn poll_close( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, ) -> Poll<Result<(), Error>>

Attempt to close the object. Read more
§

impl<T> AsyncWrite for Box<T>
where T: AsyncWrite + Unpin + ?Sized,

§

fn poll_write( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, buf: &[u8], ) -> Poll<Result<usize, Error>>

Attempt to write bytes from buf into the object. Read more
§

fn poll_write_vectored( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, bufs: &[IoSlice<'_>], ) -> Poll<Result<usize, Error>>

Like poll_write, except that it writes from a slice of buffers. Read more
§

fn is_write_vectored(&self) -> bool

Determines if this writer has an efficient poll_write_vectored implementation. Read more
§

fn poll_flush( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, ) -> Poll<Result<(), Error>>

Attempts to flush the object, ensuring that any buffered data reach their destination. Read more
§

fn poll_shutdown( self: Pin<&mut Box<T>>, cx: &mut Context<'_>, ) -> Poll<Result<(), Error>>

Initiates or attempts to shut down this writer, returning success when the I/O connection has completely shut down. Read more
Source§

impl<W, A> AsyncWrite for Box<W, A>
where W: AsyncWrite + ?Sized, A: Allocator,

Source§

async fn write<T>(&mut self, buf: T) -> BufResult<usize, T>
where T: IoBuf,

Write some bytes from the buffer into this source and return a BufResult, consisting of the buffer and a usize indicating how many bytes were written.
Source§

async fn write_vectored<T>(&mut self, buf: T) -> BufResult<usize, T>
where T: IoVectoredBuf,

Like write, except that it write bytes from a buffer implements IoVectoredBuf into the source. Read more
Source§

async fn flush(&mut self) -> Result<(), Error>

Attempts to flush the object, ensuring that any buffered data reach their destination.
Source§

async fn shutdown(&mut self) -> Result<(), Error>

Initiates or attempts to shut down this writer, returning success when the I/O connection has completely shut down.
Source§

impl<W, A> AsyncWriteAt for Box<W, A>
where W: AsyncWriteAt + ?Sized, A: Allocator,

Source§

async fn write_at<T>(&mut self, buf: T, pos: u64) -> BufResult<usize, T>
where T: IoBuf,

Like AsyncWrite::write, except that it writes at a specified position.
Source§

async fn write_vectored_at<T>( &mut self, buf: T, pos: u64, ) -> BufResult<usize, T>
where T: IoVectoredBuf,

Like AsyncWrite::write_vectored, except that it writes at a specified position.
1.1.0 · Source§

impl<T, A> Borrow<T> for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
1.1.0 · Source§

impl<T, A> BorrowMut<T> for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> Buf for Box<T>
where T: Buf + ?Sized,

§

fn remaining(&self) -> usize

Returns the number of bytes between the current position and the end of the buffer. Read more
§

fn chunk(&self) -> &[u8]

Returns a slice starting at the current position and of length between 0 and Buf::remaining(). Note that this can return a shorter slice (this allows non-continuous internal representation). Read more
§

fn chunks_vectored<'b>(&'b self, dst: &mut [IoSlice<'b>]) -> usize

Available on crate feature std only.
Fills dst with potentially multiple slices starting at self’s current position. Read more
§

fn advance(&mut self, cnt: usize)

Advance the internal cursor of the Buf Read more
§

fn has_remaining(&self) -> bool

Returns true if there are any more bytes to consume Read more
§

fn copy_to_slice(&mut self, dst: &mut [u8])

Copies bytes from self into dst. Read more
§

fn get_u8(&mut self) -> u8

Gets an unsigned 8 bit integer from self. Read more
§

fn get_i8(&mut self) -> i8

Gets a signed 8 bit integer from self. Read more
§

fn get_u16(&mut self) -> u16

Gets an unsigned 16 bit integer from self in big-endian byte order. Read more
§

fn get_u16_le(&mut self) -> u16

Gets an unsigned 16 bit integer from self in little-endian byte order. Read more
§

fn get_u16_ne(&mut self) -> u16

Gets an unsigned 16 bit integer from self in native-endian byte order. Read more
§

fn get_i16(&mut self) -> i16

Gets a signed 16 bit integer from self in big-endian byte order. Read more
§

fn get_i16_le(&mut self) -> i16

Gets a signed 16 bit integer from self in little-endian byte order. Read more
§

fn get_i16_ne(&mut self) -> i16

Gets a signed 16 bit integer from self in native-endian byte order. Read more
§

fn get_u32(&mut self) -> u32

Gets an unsigned 32 bit integer from self in the big-endian byte order. Read more
§

fn get_u32_le(&mut self) -> u32

Gets an unsigned 32 bit integer from self in the little-endian byte order. Read more
§

fn get_u32_ne(&mut self) -> u32

Gets an unsigned 32 bit integer from self in native-endian byte order. Read more
§

fn get_i32(&mut self) -> i32

Gets a signed 32 bit integer from self in big-endian byte order. Read more
§

fn get_i32_le(&mut self) -> i32

Gets a signed 32 bit integer from self in little-endian byte order. Read more
§

fn get_i32_ne(&mut self) -> i32

Gets a signed 32 bit integer from self in native-endian byte order. Read more
§

fn get_u64(&mut self) -> u64

Gets an unsigned 64 bit integer from self in big-endian byte order. Read more
§

fn get_u64_le(&mut self) -> u64

Gets an unsigned 64 bit integer from self in little-endian byte order. Read more
§

fn get_u64_ne(&mut self) -> u64

Gets an unsigned 64 bit integer from self in native-endian byte order. Read more
§

fn get_i64(&mut self) -> i64

Gets a signed 64 bit integer from self in big-endian byte order. Read more
§

fn get_i64_le(&mut self) -> i64

Gets a signed 64 bit integer from self in little-endian byte order. Read more
§

fn get_i64_ne(&mut self) -> i64

Gets a signed 64 bit integer from self in native-endian byte order. Read more
§

fn get_u128(&mut self) -> u128

Gets an unsigned 128 bit integer from self in big-endian byte order. Read more
§

fn get_u128_le(&mut self) -> u128

Gets an unsigned 128 bit integer from self in little-endian byte order. Read more
§

fn get_u128_ne(&mut self) -> u128

Gets an unsigned 128 bit integer from self in native-endian byte order. Read more
§

fn get_i128(&mut self) -> i128

Gets a signed 128 bit integer from self in big-endian byte order. Read more
§

fn get_i128_le(&mut self) -> i128

Gets a signed 128 bit integer from self in little-endian byte order. Read more
§

fn get_i128_ne(&mut self) -> i128

Gets a signed 128 bit integer from self in native-endian byte order. Read more
§

fn get_uint(&mut self, nbytes: usize) -> u64

Gets an unsigned n-byte integer from self in big-endian byte order. Read more
§

fn get_uint_le(&mut self, nbytes: usize) -> u64

Gets an unsigned n-byte integer from self in little-endian byte order. Read more
§

fn get_uint_ne(&mut self, nbytes: usize) -> u64

Gets an unsigned n-byte integer from self in native-endian byte order. Read more
§

fn get_int(&mut self, nbytes: usize) -> i64

Gets a signed n-byte integer from self in big-endian byte order. Read more
§

fn get_int_le(&mut self, nbytes: usize) -> i64

Gets a signed n-byte integer from self in little-endian byte order. Read more
§

fn get_int_ne(&mut self, nbytes: usize) -> i64

Gets a signed n-byte integer from self in native-endian byte order. Read more
§

fn get_f32(&mut self) -> f32

Gets an IEEE754 single-precision (4 bytes) floating point number from self in big-endian byte order. Read more
§

fn get_f32_le(&mut self) -> f32

Gets an IEEE754 single-precision (4 bytes) floating point number from self in little-endian byte order. Read more
§

fn get_f32_ne(&mut self) -> f32

Gets an IEEE754 single-precision (4 bytes) floating point number from self in native-endian byte order. Read more
§

fn get_f64(&mut self) -> f64

Gets an IEEE754 double-precision (8 bytes) floating point number from self in big-endian byte order. Read more
§

fn get_f64_le(&mut self) -> f64

Gets an IEEE754 double-precision (8 bytes) floating point number from self in little-endian byte order. Read more
§

fn get_f64_ne(&mut self) -> f64

Gets an IEEE754 double-precision (8 bytes) floating point number from self in native-endian byte order. Read more
§

fn try_copy_to_slice(&mut self, dst: &mut [u8]) -> Result<(), TryGetError>

Copies bytes from self into dst. Read more
§

fn try_get_u8(&mut self) -> Result<u8, TryGetError>

Gets an unsigned 8 bit integer from self. Read more
§

fn try_get_i8(&mut self) -> Result<i8, TryGetError>

Gets a signed 8 bit integer from self. Read more
§

fn try_get_u16(&mut self) -> Result<u16, TryGetError>

Gets an unsigned 16 bit integer from self in big-endian byte order. Read more
§

fn try_get_u16_le(&mut self) -> Result<u16, TryGetError>

Gets an unsigned 16 bit integer from self in little-endian byte order. Read more
§

fn try_get_u16_ne(&mut self) -> Result<u16, TryGetError>

Gets an unsigned 16 bit integer from self in native-endian byte order. Read more
§

fn try_get_i16(&mut self) -> Result<i16, TryGetError>

Gets a signed 16 bit integer from self in big-endian byte order. Read more
§

fn try_get_i16_le(&mut self) -> Result<i16, TryGetError>

Gets an signed 16 bit integer from self in little-endian byte order. Read more
§

fn try_get_i16_ne(&mut self) -> Result<i16, TryGetError>

Gets a signed 16 bit integer from self in native-endian byte order. Read more
§

fn try_get_u32(&mut self) -> Result<u32, TryGetError>

Gets an unsigned 32 bit integer from self in big-endian byte order. Read more
§

fn try_get_u32_le(&mut self) -> Result<u32, TryGetError>

Gets an unsigned 32 bit integer from self in little-endian byte order. Read more
§

fn try_get_u32_ne(&mut self) -> Result<u32, TryGetError>

Gets an unsigned 32 bit integer from self in native-endian byte order. Read more
§

fn try_get_i32(&mut self) -> Result<i32, TryGetError>

Gets a signed 32 bit integer from self in big-endian byte order. Read more
§

fn try_get_i32_le(&mut self) -> Result<i32, TryGetError>

Gets a signed 32 bit integer from self in little-endian byte order. Read more
§

fn try_get_i32_ne(&mut self) -> Result<i32, TryGetError>

Gets a signed 32 bit integer from self in native-endian byte order. Read more
§

fn try_get_u64(&mut self) -> Result<u64, TryGetError>

Gets an unsigned 64 bit integer from self in big-endian byte order. Read more
§

fn try_get_u64_le(&mut self) -> Result<u64, TryGetError>

Gets an unsigned 64 bit integer from self in little-endian byte order. Read more
§

fn try_get_u64_ne(&mut self) -> Result<u64, TryGetError>

Gets an unsigned 64 bit integer from self in native-endian byte order. Read more
§

fn try_get_i64(&mut self) -> Result<i64, TryGetError>

Gets a signed 64 bit integer from self in big-endian byte order. Read more
§

fn try_get_i64_le(&mut self) -> Result<i64, TryGetError>

Gets a signed 64 bit integer from self in little-endian byte order. Read more
§

fn try_get_i64_ne(&mut self) -> Result<i64, TryGetError>

Gets a signed 64 bit integer from self in native-endian byte order. Read more
§

fn try_get_u128(&mut self) -> Result<u128, TryGetError>

Gets an unsigned 128 bit integer from self in big-endian byte order. Read more
§

fn try_get_u128_le(&mut self) -> Result<u128, TryGetError>

Gets an unsigned 128 bit integer from self in little-endian byte order. Read more
§

fn try_get_u128_ne(&mut self) -> Result<u128, TryGetError>

Gets an unsigned 128 bit integer from self in native-endian byte order. Read more
§

fn try_get_i128(&mut self) -> Result<i128, TryGetError>

Gets a signed 128 bit integer from self in big-endian byte order. Read more
§

fn try_get_i128_le(&mut self) -> Result<i128, TryGetError>

Gets a signed 128 bit integer from self in little-endian byte order. Read more
§

fn try_get_i128_ne(&mut self) -> Result<i128, TryGetError>

Gets a signed 128 bit integer from self in native-endian byte order. Read more
§

fn try_get_uint(&mut self, nbytes: usize) -> Result<u64, TryGetError>

Gets an unsigned n-byte integer from self in big-endian byte order. Read more
§

fn try_get_uint_le(&mut self, nbytes: usize) -> Result<u64, TryGetError>

Gets an unsigned n-byte integer from self in little-endian byte order. Read more
§

fn try_get_uint_ne(&mut self, nbytes: usize) -> Result<u64, TryGetError>

Gets an unsigned n-byte integer from self in native-endian byte order. Read more
§

fn try_get_int(&mut self, nbytes: usize) -> Result<i64, TryGetError>

Gets a signed n-byte integer from self in big-endian byte order. Read more
§

fn try_get_int_le(&mut self, nbytes: usize) -> Result<i64, TryGetError>

Gets a signed n-byte integer from self in little-endian byte order. Read more
§

fn try_get_int_ne(&mut self, nbytes: usize) -> Result<i64, TryGetError>

Gets a signed n-byte integer from self in native-endian byte order. Read more
§

fn try_get_f32(&mut self) -> Result<f32, TryGetError>

Gets an IEEE754 single-precision (4 bytes) floating point number from self in big-endian byte order. Read more
§

fn try_get_f32_le(&mut self) -> Result<f32, TryGetError>

Gets an IEEE754 single-precision (4 bytes) floating point number from self in little-endian byte order. Read more
§

fn try_get_f32_ne(&mut self) -> Result<f32, TryGetError>

Gets an IEEE754 single-precision (4 bytes) floating point number from self in native-endian byte order. Read more
§

fn try_get_f64(&mut self) -> Result<f64, TryGetError>

Gets an IEEE754 double-precision (8 bytes) floating point number from self in big-endian byte order. Read more
§

fn try_get_f64_le(&mut self) -> Result<f64, TryGetError>

Gets an IEEE754 double-precision (8 bytes) floating point number from self in little-endian byte order. Read more
§

fn try_get_f64_ne(&mut self) -> Result<f64, TryGetError>

Gets an IEEE754 double-precision (8 bytes) floating point number from self in native-endian byte order. Read more
§

fn copy_to_bytes(&mut self, len: usize) -> Bytes

Consumes len bytes inside self and returns new instance of Bytes with this data. Read more
§

fn take(self, limit: usize) -> Take<Self>
where Self: Sized,

Creates an adaptor which will read at most limit bytes from self. Read more
§

fn chain<U>(self, next: U) -> Chain<Self, U>
where U: Buf, Self: Sized,

Creates an adaptor which will chain this buffer with another. Read more
§

fn reader(self) -> Reader<Self>
where Self: Sized,

Available on crate feature std only.
Creates an adaptor which implements the Read trait for self. Read more
§

impl<T> BufMut for Box<T>
where T: BufMut + ?Sized,

§

fn remaining_mut(&self) -> usize

Returns the number of bytes that can be written from the current position until the end of the buffer is reached. Read more
§

fn chunk_mut(&mut self) -> &mut UninitSlice

Returns a mutable slice starting at the current BufMut position and of length between 0 and BufMut::remaining_mut(). Note that this can be shorter than the whole remainder of the buffer (this allows non-continuous implementation). Read more
§

unsafe fn advance_mut(&mut self, cnt: usize)

Advance the internal cursor of the BufMut Read more
§

fn put_slice(&mut self, src: &[u8])

Transfer bytes into self from src and advance the cursor by the number of bytes written. Read more
§

fn put_u8(&mut self, n: u8)

Writes an unsigned 8 bit integer to self. Read more
§

fn put_i8(&mut self, n: i8)

Writes a signed 8 bit integer to self. Read more
§

fn put_u16(&mut self, n: u16)

Writes an unsigned 16 bit integer to self in big-endian byte order. Read more
§

fn put_u16_le(&mut self, n: u16)

Writes an unsigned 16 bit integer to self in little-endian byte order. Read more
§

fn put_u16_ne(&mut self, n: u16)

Writes an unsigned 16 bit integer to self in native-endian byte order. Read more
§

fn put_i16(&mut self, n: i16)

Writes a signed 16 bit integer to self in big-endian byte order. Read more
§

fn put_i16_le(&mut self, n: i16)

Writes a signed 16 bit integer to self in little-endian byte order. Read more
§

fn put_i16_ne(&mut self, n: i16)

Writes a signed 16 bit integer to self in native-endian byte order. Read more
§

fn put_u32(&mut self, n: u32)

Writes an unsigned 32 bit integer to self in big-endian byte order. Read more
§

fn put_u32_le(&mut self, n: u32)

Writes an unsigned 32 bit integer to self in little-endian byte order. Read more
§

fn put_u32_ne(&mut self, n: u32)

Writes an unsigned 32 bit integer to self in native-endian byte order. Read more
§

fn put_i32(&mut self, n: i32)

Writes a signed 32 bit integer to self in big-endian byte order. Read more
§

fn put_i32_le(&mut self, n: i32)

Writes a signed 32 bit integer to self in little-endian byte order. Read more
§

fn put_i32_ne(&mut self, n: i32)

Writes a signed 32 bit integer to self in native-endian byte order. Read more
§

fn put_u64(&mut self, n: u64)

Writes an unsigned 64 bit integer to self in the big-endian byte order. Read more
§

fn put_u64_le(&mut self, n: u64)

Writes an unsigned 64 bit integer to self in little-endian byte order. Read more
§

fn put_u64_ne(&mut self, n: u64)

Writes an unsigned 64 bit integer to self in native-endian byte order. Read more
§

fn put_i64(&mut self, n: i64)

Writes a signed 64 bit integer to self in the big-endian byte order. Read more
§

fn put_i64_le(&mut self, n: i64)

Writes a signed 64 bit integer to self in little-endian byte order. Read more
§

fn put_i64_ne(&mut self, n: i64)

Writes a signed 64 bit integer to self in native-endian byte order. Read more
§

fn has_remaining_mut(&self) -> bool

Returns true if there is space in self for more bytes. Read more
§

fn put<T>(&mut self, src: T)
where T: Buf, Self: Sized,

Transfer bytes into self from src and advance the cursor by the number of bytes written. Read more
§

fn put_bytes(&mut self, val: u8, cnt: usize)

Put cnt bytes val into self. Read more
§

fn put_u128(&mut self, n: u128)

Writes an unsigned 128 bit integer to self in the big-endian byte order. Read more
§

fn put_u128_le(&mut self, n: u128)

Writes an unsigned 128 bit integer to self in little-endian byte order. Read more
§

fn put_u128_ne(&mut self, n: u128)

Writes an unsigned 128 bit integer to self in native-endian byte order. Read more
§

fn put_i128(&mut self, n: i128)

Writes a signed 128 bit integer to self in the big-endian byte order. Read more
§

fn put_i128_le(&mut self, n: i128)

Writes a signed 128 bit integer to self in little-endian byte order. Read more
§

fn put_i128_ne(&mut self, n: i128)

Writes a signed 128 bit integer to self in native-endian byte order. Read more
§

fn put_uint(&mut self, n: u64, nbytes: usize)

Writes an unsigned n-byte integer to self in big-endian byte order. Read more
§

fn put_uint_le(&mut self, n: u64, nbytes: usize)

Writes an unsigned n-byte integer to self in the little-endian byte order. Read more
§

fn put_uint_ne(&mut self, n: u64, nbytes: usize)

Writes an unsigned n-byte integer to self in the native-endian byte order. Read more
§

fn put_int(&mut self, n: i64, nbytes: usize)

Writes low nbytes of a signed integer to self in big-endian byte order. Read more
§

fn put_int_le(&mut self, n: i64, nbytes: usize)

Writes low nbytes of a signed integer to self in little-endian byte order. Read more
§

fn put_int_ne(&mut self, n: i64, nbytes: usize)

Writes low nbytes of a signed integer to self in native-endian byte order. Read more
§

fn put_f32(&mut self, n: f32)

Writes an IEEE754 single-precision (4 bytes) floating point number to self in big-endian byte order. Read more
§

fn put_f32_le(&mut self, n: f32)

Writes an IEEE754 single-precision (4 bytes) floating point number to self in little-endian byte order. Read more
§

fn put_f32_ne(&mut self, n: f32)

Writes an IEEE754 single-precision (4 bytes) floating point number to self in native-endian byte order. Read more
§

fn put_f64(&mut self, n: f64)

Writes an IEEE754 double-precision (8 bytes) floating point number to self in big-endian byte order. Read more
§

fn put_f64_le(&mut self, n: f64)

Writes an IEEE754 double-precision (8 bytes) floating point number to self in little-endian byte order. Read more
§

fn put_f64_ne(&mut self, n: f64)

Writes an IEEE754 double-precision (8 bytes) floating point number to self in native-endian byte order. Read more
§

fn limit(self, limit: usize) -> Limit<Self>
where Self: Sized,

Creates an adaptor which can write at most limit bytes to self. Read more
§

fn writer(self) -> Writer<Self>
where Self: Sized,

Available on crate feature std only.
Creates an adaptor which implements the Write trait for self. Read more
§

fn chain_mut<U>(self, next: U) -> Chain<Self, U>
where U: BufMut, Self: Sized,

Creates an adapter which will chain this buffer with another. Read more
1.0.0 · Source§

impl<B> BufRead for Box<B>
where B: BufRead + ?Sized,

Source§

fn fill_buf(&mut self) -> Result<&[u8], Error>

Returns the contents of the internal buffer, filling it with more data, via Read methods, if empty. Read more
Source§

fn consume(&mut self, amt: usize)

Marks the given amount of additional bytes from the internal buffer as having been read. Subsequent calls to read only return bytes that have not been marked as read. Read more
Source§

fn has_data_left(&mut self) -> Result<bool, Error>

🔬This is a nightly-only experimental API. (buf_read_has_data_left)
Checks if there is any data left to be read. Read more
Source§

fn read_until(&mut self, byte: u8, buf: &mut Vec<u8>) -> Result<usize, Error>

Reads all bytes into buf until the delimiter byte or EOF is reached. Read more
Source§

fn skip_until(&mut self, byte: u8) -> Result<usize, Error>

Skips all bytes until the delimiter byte or EOF is reached. Read more
Source§

fn read_line(&mut self, buf: &mut String) -> Result<usize, Error>

Reads all bytes until a newline (the 0xA byte) is reached, and append them to the provided String buffer. Read more
1.0.0 · Source§

fn split(self, byte: u8) -> Split<Self>
where Self: Sized,

Returns an iterator over the contents of this reader split on the byte byte. Read more
1.0.0 · Source§

fn lines(self) -> Lines<Self>
where Self: Sized,

Returns an iterator over the lines of this reader. Read more
1.3.0 · Source§

impl<T, A> Clone for Box<[T], A>
where T: Clone, A: Allocator + Clone,

Available on non-no_global_oom_handling only.
Source§

fn clone_from(&mut self, source: &Box<[T], A>)

Copies source’s contents into self without creating a new allocation, so long as the two are of the same length.

§Examples
let x = Box::new([5, 6, 7]);
let mut y = Box::new([8, 9, 10]);
let yp: *const [i32] = &*y;

y.clone_from(&x);

// The value is the same
assert_eq!(x, y);

// And no allocation occurred
assert_eq!(yp, &*y);
Source§

fn clone(&self) -> Box<[T], A>

Returns a duplicate of the value. Read more
Source§

impl Clone for Box<ByteStr>

Source§

fn clone(&self) -> Box<ByteStr>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
1.29.0 · Source§

impl Clone for Box<CStr>

Source§

fn clone(&self) -> Box<CStr>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
1.29.0 · Source§

impl Clone for Box<OsStr>

Source§

fn clone(&self) -> Box<OsStr>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
1.29.0 · Source§

impl Clone for Box<Path>

Source§

fn clone(&self) -> Box<Path>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
1.0.0 · Source§

impl<T, A> Clone for Box<T, A>
where T: Clone, A: Allocator + Clone,

Available on non-no_global_oom_handling only.
Source§

fn clone(&self) -> Box<T, A>

Returns a new box with a clone() of this box’s contents.

§Examples
let x = Box::new(5);
let y = x.clone();

// The value is the same
assert_eq!(x, y);

// But they are unique objects
assert_ne!(&*x as *const i32, &*y as *const i32);
Source§

fn clone_from(&mut self, source: &Box<T, A>)

Copies source’s contents into self without creating a new allocation.

§Examples
let x = Box::new(5);
let mut y = Box::new(10);
let yp: *const i32 = &*y;

y.clone_from(&x);

// The value is the same
assert_eq!(x, y);

// And no allocation occurred
assert_eq!(yp, &*y);
§

impl Clone for Box<dyn AnyClone + Send + Sync>

§

fn clone(&self) -> Box<dyn AnyClone + Send + Sync>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl Clone for Box<dyn DynDigest>

Available on crate feature alloc only.
§

fn clone(&self) -> Box<dyn DynDigest>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
1.3.0 · Source§

impl Clone for Box<str>

Available on non-no_global_oom_handling only.
Source§

fn clone(&self) -> Box<str>

Returns a duplicate of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
§

impl<T> CommandFactory for Box<T>
where T: CommandFactory,

§

fn command() -> Command

Build a [Command] that can instantiate Self. Read more
§

fn command_for_update() -> Command

Build a [Command] that can update self. Read more
Source§

impl<G, R, A> Coroutine<R> for Box<G, A>
where G: Coroutine<R> + Unpin + ?Sized, A: Allocator,

Source§

type Yield = <G as Coroutine<R>>::Yield

🔬This is a nightly-only experimental API. (coroutine_trait)
The type of value this coroutine yields. Read more
Source§

type Return = <G as Coroutine<R>>::Return

🔬This is a nightly-only experimental API. (coroutine_trait)
The type of value this coroutine returns. Read more
Source§

fn resume( self: Pin<&mut Box<G, A>>, arg: R, ) -> CoroutineState<<Box<G, A> as Coroutine<R>>::Yield, <Box<G, A> as Coroutine<R>>::Return>

🔬This is a nightly-only experimental API. (coroutine_trait)
Resumes the execution of this coroutine. Read more
1.0.0 · Source§

impl<T, A> Debug for Box<T, A>
where T: Debug + ?Sized, A: Allocator,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
1.0.0 · Source§

impl<T> Default for Box<[T]>

Available on non-no_global_oom_handling only.
Source§

fn default() -> Box<[T]>

Creates an empty [T] inside a Box.

1.17.0 · Source§

impl Default for Box<CStr>

Source§

fn default() -> Box<CStr>

Returns the “default value” for a type. Read more
1.17.0 · Source§

impl Default for Box<OsStr>

Source§

fn default() -> Box<OsStr>

Returns the “default value” for a type. Read more
1.0.0 · Source§

impl<T> Default for Box<T>
where T: Default,

Available on non-no_global_oom_handling only.
Source§

fn default() -> Box<T>

Creates a Box<T>, with the Default value for T.

Source§

impl Default for Box<U16CStr>

Available on crate feature alloc only.
Source§

fn default() -> Box<U16CStr>

Returns the “default value” for a type. Read more
Source§

impl Default for Box<U16Str>

Source§

fn default() -> Box<U16Str>

Returns the “default value” for a type. Read more
Source§

impl Default for Box<U32CStr>

Available on crate feature alloc only.
Source§

fn default() -> Box<U32CStr>

Returns the “default value” for a type. Read more
Source§

impl Default for Box<U32Str>

Source§

fn default() -> Box<U32Str>

Returns the “default value” for a type. Read more
1.17.0 · Source§

impl Default for Box<str>

Available on non-no_global_oom_handling only.
Source§

fn default() -> Box<str>

Returns the “default value” for a type. Read more
1.0.0 · Source§

impl<T, A> Deref for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

type Target = T

The resulting type after dereferencing.
Source§

fn deref(&self) -> &T

Dereferences the value.
1.0.0 · Source§

impl<T, A> DerefMut for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

fn deref_mut(&mut self) -> &mut T

Mutably dereferences the value.
Source§

impl<'de, T> Deserialize<'de> for Box<[T]>
where T: Deserialize<'de>,

Available on crate features std or alloc only.
Source§

fn deserialize<D>( deserializer: D, ) -> Result<Box<[T]>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl<'de> Deserialize<'de> for Box<CStr>

Available on crate feature std, or non-no_core_cstr and crate feature alloc only.
Source§

fn deserialize<D>( deserializer: D, ) -> Result<Box<CStr>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl<'de> Deserialize<'de> for Box<OsStr>

Available on crate feature std and (Unix or Windows) only.
Source§

fn deserialize<D>( deserializer: D, ) -> Result<Box<OsStr>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl<'de> Deserialize<'de> for Box<Path>

Available on crate feature std only.
Source§

fn deserialize<D>( deserializer: D, ) -> Result<Box<Path>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl<'de, T> Deserialize<'de> for Box<T>
where T: Deserialize<'de>,

Available on crate features std or alloc only.
Source§

fn deserialize<D>( deserializer: D, ) -> Result<Box<T>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
Source§

impl<'de> Deserialize<'de> for Box<str>

Available on crate features std or alloc only.
Source§

fn deserialize<D>( deserializer: D, ) -> Result<Box<str>, <D as Deserializer<'de>>::Error>
where D: Deserializer<'de>,

Deserialize this value from the given Serde deserializer. Read more
1.0.0 · Source§

impl<T, A> Display for Box<T, A>
where T: Display + ?Sized, A: Allocator,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
1.0.0 · Source§

impl<I, A> DoubleEndedIterator for Box<I, A>

Source§

fn next_back(&mut self) -> Option<<I as Iterator>::Item>

Removes and returns an element from the end of the iterator. Read more
Source§

fn nth_back(&mut self, n: usize) -> Option<<I as Iterator>::Item>

Returns the nth element from the end of the iterator. Read more
Source§

fn advance_back_by(&mut self, n: usize) -> Result<(), NonZero<usize>>

🔬This is a nightly-only experimental API. (iter_advance_by)
Advances the iterator from the back by n elements. Read more
1.27.0 · Source§

fn try_rfold<B, F, R>(&mut self, init: B, f: F) -> R
where Self: Sized, F: FnMut(B, Self::Item) -> R, R: Try<Output = B>,

This is the reverse version of Iterator::try_fold(): it takes elements starting from the back of the iterator. Read more
1.27.0 · Source§

fn rfold<B, F>(self, init: B, f: F) -> B
where Self: Sized, F: FnMut(B, Self::Item) -> B,

An iterator method that reduces the iterator’s elements to a single, final value, starting from the back. Read more
1.27.0 · Source§

fn rfind<P>(&mut self, predicate: P) -> Option<Self::Item>
where Self: Sized, P: FnMut(&Self::Item) -> bool,

Searches for an element of an iterator from the back that satisfies a predicate. Read more
1.0.0 · Source§

impl<T, A> Drop for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

fn drop(&mut self)

Executes the destructor for this type. Read more
1.8.0 · Source§

impl<E> Error for Box<E>
where E: Error,

Source§

fn cause(&self) -> Option<&dyn Error>

👎Deprecated since 1.33.0: replaced by Error::source, which can support downcasting
Source§

fn source(&self) -> Option<&(dyn Error + 'static)>

Returns the lower-level source of this error, if any. Read more
Source§

fn provide<'b>(&'b self, request: &mut Request<'b>)

🔬This is a nightly-only experimental API. (error_generic_member_access)
Provides type-based access to context intended for error reports. Read more
1.0.0 · Source§

fn description(&self) -> &str

👎Deprecated since 1.42.0: use the Display impl or to_string()
1.0.0 · Source§

impl<I, A> ExactSizeIterator for Box<I, A>

Source§

fn len(&self) -> usize

Returns the exact remaining length of the iterator. Read more
Source§

fn is_empty(&self) -> bool

🔬This is a nightly-only experimental API. (exact_size_is_empty)
Returns true if the iterator is empty. Read more
1.45.0 · Source§

impl<A> Extend<Box<str, A>> for String
where A: Allocator,

Available on non-no_global_oom_handling only.
Source§

fn extend<I>(&mut self, iter: I)
where I: IntoIterator<Item = Box<str, A>>,

Extends a collection with the contents of an iterator. Read more
Source§

fn extend_one(&mut self, item: A)

🔬This is a nightly-only experimental API. (extend_one)
Extends a collection with exactly one element.
Source§

fn extend_reserve(&mut self, additional: usize)

🔬This is a nightly-only experimental API. (extend_one)
Reserves capacity in a collection for the given number of additional elements. Read more
1.35.0 · Source§

impl<Args, F, A> Fn<Args> for Box<F, A>
where Args: Tuple, F: Fn<Args> + ?Sized, A: Allocator,

Source§

extern "rust-call" fn call( &self, args: Args, ) -> <Box<F, A> as FnOnce<Args>>::Output

🔬This is a nightly-only experimental API. (fn_traits)
Performs the call operation.
1.35.0 · Source§

impl<Args, F, A> FnMut<Args> for Box<F, A>
where Args: Tuple, F: FnMut<Args> + ?Sized, A: Allocator,

Source§

extern "rust-call" fn call_mut( &mut self, args: Args, ) -> <Box<F, A> as FnOnce<Args>>::Output

🔬This is a nightly-only experimental API. (fn_traits)
Performs the call operation.
1.35.0 · Source§

impl<Args, F, A> FnOnce<Args> for Box<F, A>
where Args: Tuple, F: FnOnce<Args> + ?Sized, A: Allocator,

Source§

type Output = <F as FnOnce<Args>>::Output

The returned type after the call operator is used.
Source§

extern "rust-call" fn call_once( self, args: Args, ) -> <Box<F, A> as FnOnce<Args>>::Output

🔬This is a nightly-only experimental API. (fn_traits)
Performs the call operation.
1.17.0 · Source§

impl<T> From<&[T]> for Box<[T]>
where T: Clone,

Available on non-no_global_oom_handling only.
Source§

fn from(slice: &[T]) -> Box<[T]>

Converts a &[T] into a Box<[T]>

This conversion allocates on the heap and performs a copy of slice and its contents.

§Examples
// create a &[u8] which will be used to create a Box<[u8]>
let slice: &[u8] = &[104, 101, 108, 108, 111];
let boxed_slice: Box<[u8]> = Box::from(slice);

println!("{boxed_slice:?}");
1.17.0 · Source§

impl From<&CStr> for Box<CStr>

Source§

fn from(s: &CStr) -> Box<CStr>

Converts a &CStr into a Box<CStr>, by copying the contents into a newly allocated Box.

1.17.0 · Source§

impl From<&OsStr> for Box<OsStr>

Source§

fn from(s: &OsStr) -> Box<OsStr>

Copies the string into a newly allocated Box<OsStr>.

1.17.0 · Source§

impl From<&Path> for Box<Path>

Source§

fn from(path: &Path) -> Box<Path>

Creates a boxed Path from a reference.

This will allocate and clone path to it.

Source§

impl<'a> From<&'a U16CStr> for Box<U16CStr>

Available on crate feature alloc only.
Source§

fn from(s: &'a U16CStr) -> Box<U16CStr>

Converts to this type from the input type.
Source§

impl<'a> From<&'a U16Str> for Box<U16Str>

Source§

fn from(s: &'a U16Str) -> Box<U16Str>

Converts to this type from the input type.
Source§

impl<'a> From<&'a U32CStr> for Box<U32CStr>

Available on crate feature alloc only.
Source§

fn from(s: &'a U32CStr) -> Box<U32CStr>

Converts to this type from the input type.
Source§

impl<'a> From<&'a U32Str> for Box<U32Str>

Source§

fn from(s: &'a U32Str) -> Box<U32Str>

Converts to this type from the input type.
1.84.0 · Source§

impl<T> From<&mut [T]> for Box<[T]>
where T: Clone,

Available on non-no_global_oom_handling only.
Source§

fn from(slice: &mut [T]) -> Box<[T]>

Converts a &mut [T] into a Box<[T]>

This conversion allocates on the heap and performs a copy of slice and its contents.

§Examples
// create a &mut [u8] which will be used to create a Box<[u8]>
let mut array = [104, 101, 108, 108, 111];
let slice: &mut [u8] = &mut array;
let boxed_slice: Box<[u8]> = Box::from(slice);

println!("{boxed_slice:?}");
1.84.0 · Source§

impl From<&mut CStr> for Box<CStr>

Source§

fn from(s: &mut CStr) -> Box<CStr>

Converts a &mut CStr into a Box<CStr>, by copying the contents into a newly allocated Box.

1.84.0 · Source§

impl From<&mut OsStr> for Box<OsStr>

Source§

fn from(s: &mut OsStr) -> Box<OsStr>

Copies the string into a newly allocated Box<OsStr>.

1.84.0 · Source§

impl From<&mut Path> for Box<Path>

Source§

fn from(path: &mut Path) -> Box<Path>

Creates a boxed Path from a reference.

This will allocate and clone path to it.

1.84.0 · Source§

impl From<&mut str> for Box<str>

Available on non-no_global_oom_handling only.
Source§

fn from(s: &mut str) -> Box<str>

Converts a &mut str into a Box<str>

This conversion allocates on the heap and performs a copy of s.

§Examples
let mut original = String::from("hello");
let original: &mut str = &mut original;
let boxed: Box<str> = Box::from(original);
println!("{boxed}");
1.6.0 · Source§

impl<'a> From<&str> for Box<dyn Error + 'a>

Available on non-no_global_oom_handling only.
Source§

fn from(err: &str) -> Box<dyn Error + 'a>

Converts a str into a box of dyn Error.

§Examples
use std::error::Error;

let a_str_error = "a str error";
let a_boxed_error = Box::<dyn Error>::from(a_str_error);
assert!(size_of::<Box<dyn Error>>() == size_of_val(&a_boxed_error))
1.0.0 · Source§

impl<'a> From<&str> for Box<dyn Error + Send + Sync + 'a>

Available on non-no_global_oom_handling only.
Source§

fn from(err: &str) -> Box<dyn Error + Send + Sync + 'a>

Converts a str into a box of dyn Error + Send + Sync.

§Examples
use std::error::Error;

let a_str_error = "a str error";
let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_str_error);
assert!(
    size_of::<Box<dyn Error + Send + Sync>>() == size_of_val(&a_boxed_error))
1.17.0 · Source§

impl From<&str> for Box<str>

Available on non-no_global_oom_handling only.
Source§

fn from(s: &str) -> Box<str>

Converts a &str into a Box<str>

This conversion allocates on the heap and performs a copy of s.

§Examples
let boxed: Box<str> = Box::from("hello");
println!("{boxed}");
1.45.0 · Source§

impl<T, const N: usize> From<[T; N]> for Box<[T]>

Available on non-no_global_oom_handling only.
Source§

fn from(array: [T; N]) -> Box<[T]>

Converts a [T; N] into a Box<[T]>

This conversion moves the array to newly heap-allocated memory.

§Examples
let boxed: Box<[u8]> = Box::from([4, 2]);
println!("{boxed:?}");
1.18.0 · Source§

impl<T, A> From<Box<[T], A>> for Vec<T, A>
where A: Allocator,

Source§

fn from(s: Box<[T], A>) -> Vec<T, A>

Converts a boxed slice into a vector by transferring ownership of the existing heap allocation.

§Examples
let b: Box<[i32]> = vec![1, 2, 3].into_boxed_slice();
assert_eq!(Vec::from(b), vec![1, 2, 3]);
Source§

impl From<Box<[u8]>> for Box<ByteStr>

Source§

fn from(s: Box<[u8]>) -> Box<ByteStr>

Converts to this type from the input type.
§

impl From<Box<[u8]>> for Bytes

§

fn from(slice: Box<[u8]>) -> Bytes

Converts to this type from the input type.
Source§

impl From<Box<ByteStr>> for Box<[u8]>

Source§

fn from(s: Box<ByteStr>) -> Box<[u8]>

Converts to this type from the input type.
1.18.0 · Source§

impl From<Box<CStr>> for CString

Source§

fn from(s: Box<CStr>) -> CString

Converts a Box<CStr> into a CString without copying or allocating.

1.21.0 · Source§

impl<T, A> From<Box<T, A>> for Arc<T, A>
where A: Allocator, T: ?Sized,

Available on non-no_global_oom_handling only.
Source§

fn from(v: Box<T, A>) -> Arc<T, A>

Move a boxed object to a new, reference-counted allocation.

§Example
let unique: Box<str> = Box::from("eggplant");
let shared: Arc<str> = Arc::from(unique);
assert_eq!("eggplant", &shared[..]);
1.21.0 · Source§

impl<T, A> From<Box<T, A>> for Rc<T, A>
where A: Allocator, T: ?Sized,

Available on non-no_global_oom_handling only.
Source§

fn from(v: Box<T, A>) -> Rc<T, A>

Move a boxed object to a new, reference counted, allocation.

§Example
let original: Box<i32> = Box::new(1);
let shared: Rc<i32> = Rc::from(original);
assert_eq!(1, *shared);
Source§

impl From<Box<Utf16Str>> for Box<[u16]>

Available on crate feature alloc only.
Source§

fn from(value: Box<Utf16Str>) -> Box<[u16]>

Converts to this type from the input type.
Source§

impl From<Box<Utf32Str>> for Box<[u32]>

Available on crate feature alloc only.
Source§

fn from(value: Box<Utf32Str>) -> Box<[u32]>

Converts to this type from the input type.
1.18.0 · Source§

impl From<Box<str>> for String

Source§

fn from(s: Box<str>) -> String

Converts the given boxed str slice to a String. It is notable that the str slice is owned.

§Examples
let s1: String = String::from("hello world");
let s2: Box<str> = s1.into_boxed_str();
let s3: String = String::from(s2);

assert_eq!("hello world", s3)
1.19.0 · Source§

impl<A> From<Box<str, A>> for Box<[u8], A>
where A: Allocator,

Source§

fn from(s: Box<str, A>) -> Box<[u8], A>

Converts a Box<str> into a Box<[u8]>

This conversion does not allocate on the heap and happens in place.

§Examples
// create a Box<str> which will be used to create a Box<[u8]>
let boxed: Box<str> = Box::from("hello");
let boxed_str: Box<[u8]> = Box::from(boxed);

// create a &[u8] which will be used to create a Box<[u8]>
let slice: &[u8] = &[104, 101, 108, 108, 111];
let boxed_slice = Box::from(slice);

assert_eq!(boxed_slice, boxed_str);
1.20.0 · Source§

impl From<CString> for Box<CStr>

Source§

fn from(s: CString) -> Box<CStr>

Converts a CString into a Box<CStr> without copying or allocating.

1.45.0 · Source§

impl<T> From<Cow<'_, [T]>> for Box<[T]>
where T: Clone,

Available on non-no_global_oom_handling only.
Source§

fn from(cow: Cow<'_, [T]>) -> Box<[T]>

Converts a Cow<'_, [T]> into a Box<[T]>

When cow is the Cow::Borrowed variant, this conversion allocates on the heap and copies the underlying slice. Otherwise, it will try to reuse the owned Vec’s allocation.

1.45.0 · Source§

impl From<Cow<'_, CStr>> for Box<CStr>

Source§

fn from(cow: Cow<'_, CStr>) -> Box<CStr>

Converts a Cow<'a, CStr> into a Box<CStr>, by copying the contents if they are borrowed.

1.45.0 · Source§

impl From<Cow<'_, OsStr>> for Box<OsStr>

Source§

fn from(cow: Cow<'_, OsStr>) -> Box<OsStr>

Converts a Cow<'a, OsStr> into a Box<OsStr>, by copying the contents if they are borrowed.

1.45.0 · Source§

impl From<Cow<'_, Path>> for Box<Path>

Source§

fn from(cow: Cow<'_, Path>) -> Box<Path>

Creates a boxed Path from a clone-on-write pointer.

Converting from a Cow::Owned does not clone or allocate.

1.45.0 · Source§

impl From<Cow<'_, str>> for Box<str>

Available on non-no_global_oom_handling only.
Source§

fn from(cow: Cow<'_, str>) -> Box<str>

Converts a Cow<'_, str> into a Box<str>

When cow is the Cow::Borrowed variant, this conversion allocates on the heap and copies the underlying str. Otherwise, it will try to reuse the owned String’s allocation.

§Examples
use std::borrow::Cow;

let unboxed = Cow::Borrowed("hello");
let boxed: Box<str> = Box::from(unboxed);
println!("{boxed}");
let unboxed = Cow::Owned("hello".to_string());
let boxed: Box<str> = Box::from(unboxed);
println!("{boxed}");
1.22.0 · Source§

impl<'a, 'b> From<Cow<'b, str>> for Box<dyn Error + 'a>

Available on non-no_global_oom_handling only.
Source§

fn from(err: Cow<'b, str>) -> Box<dyn Error + 'a>

Converts a Cow into a box of dyn Error.

§Examples
use std::error::Error;
use std::borrow::Cow;

let a_cow_str_error = Cow::from("a str error");
let a_boxed_error = Box::<dyn Error>::from(a_cow_str_error);
assert!(size_of::<Box<dyn Error>>() == size_of_val(&a_boxed_error))
1.22.0 · Source§

impl<'a, 'b> From<Cow<'b, str>> for Box<dyn Error + Send + Sync + 'a>

Available on non-no_global_oom_handling only.
Source§

fn from(err: Cow<'b, str>) -> Box<dyn Error + Send + Sync + 'a>

Converts a Cow into a box of dyn Error + Send + Sync.

§Examples
use std::error::Error;
use std::borrow::Cow;

let a_cow_str_error = Cow::from("a str error");
let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_cow_str_error);
assert!(
    size_of::<Box<dyn Error + Send + Sync>>() == size_of_val(&a_boxed_error))
1.0.0 · Source§

impl<'a, E> From<E> for Box<dyn Error + 'a>
where E: Error + 'a,

Available on non-no_global_oom_handling only.
Source§

fn from(err: E) -> Box<dyn Error + 'a>

Converts a type of Error into a box of dyn Error.

§Examples
use std::error::Error;
use std::fmt;

#[derive(Debug)]
struct AnError;

impl fmt::Display for AnError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "An error")
    }
}

impl Error for AnError {}

let an_error = AnError;
assert!(0 == size_of_val(&an_error));
let a_boxed_error = Box::<dyn Error>::from(an_error);
assert!(size_of::<Box<dyn Error>>() == size_of_val(&a_boxed_error))
1.0.0 · Source§

impl<'a, E> From<E> for Box<dyn Error + Send + Sync + 'a>
where E: Error + Send + Sync + 'a,

Available on non-no_global_oom_handling only.
Source§

fn from(err: E) -> Box<dyn Error + Send + Sync + 'a>

Converts a type of Error + Send + Sync into a box of dyn Error + Send + Sync.

§Examples
use std::error::Error;
use std::fmt;

#[derive(Debug)]
struct AnError;

impl fmt::Display for AnError {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "An error")
    }
}

impl Error for AnError {}

unsafe impl Send for AnError {}

unsafe impl Sync for AnError {}

let an_error = AnError;
assert!(0 == size_of_val(&an_error));
let a_boxed_error = Box::<dyn Error + Send + Sync>::from(an_error);
assert!(
    size_of::<Box<dyn Error + Send + Sync>>() == size_of_val(&a_boxed_error))
1.20.0 · Source§

impl From<OsString> for Box<OsStr>

Source§

fn from(s: OsString) -> Box<OsStr>

Converts an OsString into a Box<OsStr> without copying or allocating.

1.20.0 · Source§

impl From<PathBuf> for Box<Path>

Source§

fn from(p: PathBuf) -> Box<Path>

Converts a PathBuf into a Box<Path>.

This conversion currently should not allocate memory, but this behavior is not guaranteed on all platforms or in all future versions.

1.6.0 · Source§

impl<'a> From<String> for Box<dyn Error + 'a>

Available on non-no_global_oom_handling only.
Source§

fn from(str_err: String) -> Box<dyn Error + 'a>

Converts a String into a box of dyn Error.

§Examples
use std::error::Error;

let a_string_error = "a string error".to_string();
let a_boxed_error = Box::<dyn Error>::from(a_string_error);
assert!(size_of::<Box<dyn Error>>() == size_of_val(&a_boxed_error))
1.0.0 · Source§

impl<'a> From<String> for Box<dyn Error + Send + Sync + 'a>

Available on non-no_global_oom_handling only.
Source§

fn from(err: String) -> Box<dyn Error + Send + Sync + 'a>

Converts a String into a box of dyn Error + Send + Sync.

§Examples
use std::error::Error;

let a_string_error = "a string error".to_string();
let a_boxed_error = Box::<dyn Error + Send + Sync>::from(a_string_error);
assert!(
    size_of::<Box<dyn Error + Send + Sync>>() == size_of_val(&a_boxed_error))
1.20.0 · Source§

impl From<String> for Box<str>

Available on non-no_global_oom_handling only.
Source§

fn from(s: String) -> Box<str>

Converts the given String to a boxed str slice that is owned.

§Examples
let s1: String = String::from("hello world");
let s2: Box<str> = Box::from(s1);
let s3: String = String::from(s2);

assert_eq!("hello world", s3)
1.6.0 · Source§

impl<T> From<T> for Box<T>

Available on non-no_global_oom_handling only.
Source§

fn from(t: T) -> Box<T>

Converts a T into a Box<T>

The conversion allocates on the heap and moves t from the stack into it.

§Examples
let x = 5;
let boxed = Box::new(5);

assert_eq!(Box::from(x), boxed);
Source§

impl From<U16CString> for Box<U16CStr>

Source§

fn from(s: U16CString) -> Box<U16CStr>

Converts to this type from the input type.
Source§

impl From<U16String> for Box<U16Str>

Source§

fn from(s: U16String) -> Box<U16Str>

Converts to this type from the input type.
Source§

impl From<U32CString> for Box<U32CStr>

Source§

fn from(s: U32CString) -> Box<U32CStr>

Converts to this type from the input type.
Source§

impl From<U32String> for Box<U32Str>

Source§

fn from(s: U32String) -> Box<U32Str>

Converts to this type from the input type.
1.20.0 · Source§

impl<T, A> From<Vec<T, A>> for Box<[T], A>
where A: Allocator,

Available on non-no_global_oom_handling only.
Source§

fn from(v: Vec<T, A>) -> Box<[T], A>

Converts a vector into a boxed slice.

Before doing the conversion, this method discards excess capacity like Vec::shrink_to_fit.

§Examples
assert_eq!(Box::from(vec![1, 2, 3]), vec![1, 2, 3].into_boxed_slice());

Any excess capacity is removed:

let mut vec = Vec::with_capacity(10);
vec.extend([1, 2, 3]);

assert_eq!(Box::from(vec), vec![1, 2, 3].into_boxed_slice());
§

impl From<Writer> for Box<[u8]>

§

fn from(writer: Writer) -> Box<[u8]>

Converts to this type from the input type.
§

impl<T> FromArgMatches for Box<T>
where T: FromArgMatches,

§

fn from_arg_matches(matches: &ArgMatches) -> Result<Box<T>, Error>

Instantiate Self from [ArgMatches], parsing the arguments as needed. Read more
§

fn from_arg_matches_mut(matches: &mut ArgMatches) -> Result<Box<T>, Error>

Instantiate Self from [ArgMatches], parsing the arguments as needed. Read more
§

fn update_from_arg_matches(&mut self, matches: &ArgMatches) -> Result<(), Error>

Assign values from ArgMatches to self.
§

fn update_from_arg_matches_mut( &mut self, matches: &mut ArgMatches, ) -> Result<(), Error>

Assign values from ArgMatches to self.
1.80.0 · Source§

impl<'a> FromIterator<&'a char> for Box<str>

Available on non-no_global_oom_handling only.
Source§

fn from_iter<T>(iter: T) -> Box<str>
where T: IntoIterator<Item = &'a char>,

Creates a value from an iterator. Read more
1.80.0 · Source§

impl<'a> FromIterator<&'a str> for Box<str>

Available on non-no_global_oom_handling only.
Source§

fn from_iter<T>(iter: T) -> Box<str>
where T: IntoIterator<Item = &'a str>,

Creates a value from an iterator. Read more
1.80.0 · Source§

impl<A> FromIterator<Box<str, A>> for Box<str>
where A: Allocator,

Available on non-no_global_oom_handling only.
Source§

fn from_iter<T>(iter: T) -> Box<str>
where T: IntoIterator<Item = Box<str, A>>,

Creates a value from an iterator. Read more
1.45.0 · Source§

impl<A> FromIterator<Box<str, A>> for String
where A: Allocator,

Available on non-no_global_oom_handling only.
Source§

fn from_iter<I>(iter: I) -> String
where I: IntoIterator<Item = Box<str, A>>,

Creates a value from an iterator. Read more
1.80.0 · Source§

impl<'a> FromIterator<Cow<'a, str>> for Box<str>

Available on non-no_global_oom_handling only.
Source§

fn from_iter<T>(iter: T) -> Box<str>
where T: IntoIterator<Item = Cow<'a, str>>,

Creates a value from an iterator. Read more
1.32.0 · Source§

impl<I> FromIterator<I> for Box<[I]>

Available on non-no_global_oom_handling only.
Source§

fn from_iter<T>(iter: T) -> Box<[I]>
where T: IntoIterator<Item = I>,

Creates a value from an iterator. Read more
1.80.0 · Source§

impl FromIterator<String> for Box<str>

Available on non-no_global_oom_handling only.
Source§

fn from_iter<T>(iter: T) -> Box<str>
where T: IntoIterator<Item = String>,

Creates a value from an iterator. Read more
1.80.0 · Source§

impl FromIterator<char> for Box<str>

Available on non-no_global_oom_handling only.
Source§

fn from_iter<T>(iter: T) -> Box<str>
where T: IntoIterator<Item = char>,

Creates a value from an iterator. Read more
§

impl<'a> FromParallelIterator<&'a char> for Box<str>

Collects characters from a parallel iterator into a boxed string.

§

fn from_par_iter<I>(par_iter: I) -> Box<str>
where I: IntoParallelIterator<Item = &'a char>,

Creates an instance of the collection from the parallel iterator par_iter. Read more
§

impl<'a> FromParallelIterator<&'a str> for Box<str>

Collects string slices from a parallel iterator into a boxed string.

§

fn from_par_iter<I>(par_iter: I) -> Box<str>
where I: IntoParallelIterator<Item = &'a str>,

Creates an instance of the collection from the parallel iterator par_iter. Read more
§

impl FromParallelIterator<Box<str>> for Box<str>

Collects boxed strings from a parallel iterator into a boxed string.

§

fn from_par_iter<I>(par_iter: I) -> Box<str>
where I: IntoParallelIterator<Item = Box<str>>,

Creates an instance of the collection from the parallel iterator par_iter. Read more
§

impl FromParallelIterator<Box<str>> for String

Collects boxed strings from a parallel iterator into a string.

§

fn from_par_iter<I>(par_iter: I) -> String
where I: IntoParallelIterator<Item = Box<str>>,

Creates an instance of the collection from the parallel iterator par_iter. Read more
§

impl<'a> FromParallelIterator<Cow<'a, str>> for Box<str>

Collects string slices from a parallel iterator into a boxed string.

§

fn from_par_iter<I>(par_iter: I) -> Box<str>
where I: IntoParallelIterator<Item = Cow<'a, str>>,

Creates an instance of the collection from the parallel iterator par_iter. Read more
§

impl FromParallelIterator<String> for Box<str>

Collects strings from a parallel iterator into a boxed string.

§

fn from_par_iter<I>(par_iter: I) -> Box<str>
where I: IntoParallelIterator<Item = String>,

Creates an instance of the collection from the parallel iterator par_iter. Read more
§

impl<T> FromParallelIterator<T> for Box<[T]>
where T: Send,

Collects items from a parallel iterator into a boxed slice.

§

fn from_par_iter<I>(par_iter: I) -> Box<[T]>
where I: IntoParallelIterator<Item = T>,

Creates an instance of the collection from the parallel iterator par_iter. Read more
§

impl FromParallelIterator<char> for Box<str>

Collects characters from a parallel iterator into a boxed string.

§

fn from_par_iter<I>(par_iter: I) -> Box<str>
where I: IntoParallelIterator<Item = char>,

Creates an instance of the collection from the parallel iterator par_iter. Read more
§

impl<F> FusedFuture for Box<F>
where F: FusedFuture + Unpin + ?Sized,

§

fn is_terminated(&self) -> bool

Returns true if the underlying future should no longer be polled.
§

impl<S> FusedStream for Box<S>
where S: FusedStream + Unpin + ?Sized,

§

fn is_terminated(&self) -> bool

Returns true if the stream should no longer be polled.
1.36.0 · Source§

impl<F, A> Future for Box<F, A>
where F: Future + Unpin + ?Sized, A: Allocator,

Source§

type Output = <F as Future>::Output

The type of value produced on completion.
Source§

fn poll( self: Pin<&mut Box<F, A>>, cx: &mut Context<'_>, ) -> Poll<<Box<F, A> as Future>::Output>

Attempts to resolve the future to a final value, registering the current task for wakeup if the value is not yet available. Read more
1.0.0 · Source§

impl<T, A> Hash for Box<T, A>
where T: Hash + ?Sized, A: Allocator,

Source§

fn hash<H>(&self, state: &mut H)
where H: Hasher,

Feeds this value into the given Hasher. Read more
1.3.0 · Source§

fn hash_slice<H>(data: &[Self], state: &mut H)
where H: Hasher, Self: Sized,

Feeds a slice of this type into the given Hasher. Read more
1.22.0 · Source§

impl<T, A> Hasher for Box<T, A>
where T: Hasher + ?Sized, A: Allocator,

Source§

fn finish(&self) -> u64

Returns the hash value for the values written so far. Read more
Source§

fn write(&mut self, bytes: &[u8])

Writes some data into this Hasher. Read more
Source§

fn write_u8(&mut self, i: u8)

Writes a single u8 into this hasher.
Source§

fn write_u16(&mut self, i: u16)

Writes a single u16 into this hasher.
Source§

fn write_u32(&mut self, i: u32)

Writes a single u32 into this hasher.
Source§

fn write_u64(&mut self, i: u64)

Writes a single u64 into this hasher.
Source§

fn write_u128(&mut self, i: u128)

Writes a single u128 into this hasher.
Source§

fn write_usize(&mut self, i: usize)

Writes a single usize into this hasher.
Source§

fn write_i8(&mut self, i: i8)

Writes a single i8 into this hasher.
Source§

fn write_i16(&mut self, i: i16)

Writes a single i16 into this hasher.
Source§

fn write_i32(&mut self, i: i32)

Writes a single i32 into this hasher.
Source§

fn write_i64(&mut self, i: i64)

Writes a single i64 into this hasher.
Source§

fn write_i128(&mut self, i: i128)

Writes a single i128 into this hasher.
Source§

fn write_isize(&mut self, i: isize)

Writes a single isize into this hasher.
Source§

fn write_length_prefix(&mut self, len: usize)

🔬This is a nightly-only experimental API. (hasher_prefixfree_extras)
Writes a length prefix into this hasher, as part of being prefix-free. Read more
Source§

fn write_str(&mut self, s: &str)

🔬This is a nightly-only experimental API. (hasher_prefixfree_extras)
Writes a single str into this hasher. Read more
§

impl HeaderKey for Box<dyn HeaderProtectionKey>

§

fn decrypt(&self, pn_offset: usize, packet: &mut [u8])

Decrypt the given packet’s header
§

fn encrypt(&self, pn_offset: usize, packet: &mut [u8])

Encrypt the given packet’s header
§

fn sample_size(&self) -> usize

The sample size used for this key’s algorithm
1.80.0 · Source§

impl<'a, I, A> IntoIterator for &'a Box<[I], A>
where A: Allocator,

Source§

type IntoIter = Iter<'a, I>

Which kind of iterator are we turning this into?
Source§

type Item = &'a I

The type of the elements being iterated over.
Source§

fn into_iter(self) -> Iter<'a, I>

Creates an iterator from a value. Read more
1.80.0 · Source§

impl<'a, I, A> IntoIterator for &'a mut Box<[I], A>
where A: Allocator,

Source§

type IntoIter = IterMut<'a, I>

Which kind of iterator are we turning this into?
Source§

type Item = &'a mut I

The type of the elements being iterated over.
Source§

fn into_iter(self) -> IterMut<'a, I>

Creates an iterator from a value. Read more
1.80.0 · Source§

impl<I, A> IntoIterator for Box<[I], A>
where A: Allocator,

Source§

type IntoIter = IntoIter<I, A>

Which kind of iterator are we turning this into?
Source§

type Item = I

The type of the elements being iterated over.
Source§

fn into_iter(self) -> IntoIter<I, A>

Creates an iterator from a value. Read more
§

impl<'data, T> IntoParallelIterator for &'data Box<[T]>
where T: Sync,

§

type Item = &'data T

The type of item that the parallel iterator will produce.
§

type Iter = Iter<'data, T>

The parallel iterator type that will be created.
§

fn into_par_iter(self) -> <&'data Box<[T]> as IntoParallelIterator>::Iter

Converts self into a parallel iterator. Read more
§

impl<'data, T> IntoParallelIterator for &'data mut Box<[T]>
where T: Send,

§

type Item = &'data mut T

The type of item that the parallel iterator will produce.
§

type Iter = IterMut<'data, T>

The parallel iterator type that will be created.
§

fn into_par_iter(self) -> <&'data mut Box<[T]> as IntoParallelIterator>::Iter

Converts self into a parallel iterator. Read more
§

impl<T> IntoParallelIterator for Box<[T]>
where T: Send,

§

type Item = T

The type of item that the parallel iterator will produce.
§

type Iter = IntoIter<T>

The parallel iterator type that will be created.
§

fn into_par_iter(self) -> <Box<[T]> as IntoParallelIterator>::Iter

Converts self into a parallel iterator. Read more
§

impl<B, A> IoBuf for Box<B, A>
where B: IoBuf + ?Sized, A: Allocator + 'static,

§

fn as_init(&self) -> &[u8]

Get the slice of initialized bytes.
§

fn buf_len(&self) -> usize

Length of initialized bytes in the buffer.
§

fn buf_ptr(&self) -> *const u8

Raw pointer to the buffer.
§

fn slice(self, range: impl RangeBounds<usize>) -> Slice<Self>
where Self: Sized,

Returns a view of the buffer with the specified range. Read more
§

impl<B, A> IoBufMut for Box<B, A>
where B: IoBufMut + ?Sized, A: Allocator + 'static,

§

fn as_uninit(&mut self) -> &mut [MaybeUninit<u8>]

Get the full mutable slice of the buffer, including both initialized and uninitialized bytes.
§

fn reserve(&mut self, len: usize) -> Result<(), ReserveError>

Reserve additional capacity for the buffer. Read more
§

fn reserve_exact(&mut self, len: usize) -> Result<(), ReserveExactError>

Reserve exactly len additional capacity for the buffer. Read more
§

fn buf_capacity(&mut self) -> usize

Total capacity of the buffer, including both initialized and uninitialized bytes.
§

fn buf_mut_ptr(&mut self) -> *mut MaybeUninit<u8>

Get the raw mutable pointer to the buffer.
§

fn as_mut_slice(&mut self) -> &mut [u8]

Get the mutable slice of initialized bytes. The content is the same as IoBuf::as_init, but mutable.
§

fn uninit(self) -> Uninit<Self>
where Self: Sized,

Returns an Uninit, which is a Slice that only exposes uninitialized bytes. Read more
§

fn is_filled(&mut self) -> bool

Indicate whether the buffer has been filled (uninit portion is empty)
1.0.0 · Source§

impl<I, A> Iterator for Box<I, A>
where I: Iterator + ?Sized, A: Allocator,

Source§

type Item = <I as Iterator>::Item

The type of the elements being iterated over.
Source§

fn next(&mut self) -> Option<<I as Iterator>::Item>

Advances the iterator and returns the next value. Read more
Source§

fn size_hint(&self) -> (usize, Option<usize>)

Returns the bounds on the remaining length of the iterator. Read more
Source§

fn nth(&mut self, n: usize) -> Option<<I as Iterator>::Item>

Returns the nth element of the iterator. Read more
Source§

fn last(self) -> Option<<I as Iterator>::Item>

Consumes the iterator, returning the last element. Read more
Source§

fn next_chunk<const N: usize>( &mut self, ) -> Result<[Self::Item; N], IntoIter<Self::Item, N>>
where Self: Sized,

🔬This is a nightly-only experimental API. (iter_next_chunk)
Advances the iterator and returns an array containing the next N values. Read more
1.0.0 · Source§

fn count(self) -> usize
where Self: Sized,

Consumes the iterator, counting the number of iterations and returning it. Read more
Source§

fn advance_by(&mut self, n: usize) -> Result<(), NonZero<usize>>

🔬This is a nightly-only experimental API. (iter_advance_by)
Advances the iterator by n elements. Read more
1.28.0 · Source§

fn step_by(self, step: usize) -> StepBy<Self>
where Self: Sized,

Creates an iterator starting at the same point, but stepping by the given amount at each iteration. Read more
1.0.0 · Source§

fn chain<U>(self, other: U) -> Chain<Self, <U as IntoIterator>::IntoIter>
where Self: Sized, U: IntoIterator<Item = Self::Item>,

Takes two iterators and creates a new iterator over both in sequence. Read more
1.0.0 · Source§

fn zip<U>(self, other: U) -> Zip<Self, <U as IntoIterator>::IntoIter>
where Self: Sized, U: IntoIterator,

‘Zips up’ two iterators into a single iterator of pairs. Read more
Source§

fn intersperse(self, separator: Self::Item) -> Intersperse<Self>
where Self: Sized, Self::Item: Clone,

🔬This is a nightly-only experimental API. (iter_intersperse)
Creates a new iterator which places a copy of separator between adjacent items of the original iterator. Read more
Source§

fn intersperse_with<G>(self, separator: G) -> IntersperseWith<Self, G>
where Self: Sized, G: FnMut() -> Self::Item,

🔬This is a nightly-only experimental API. (iter_intersperse)
Creates a new iterator which places an item generated by separator between adjacent items of the original iterator. Read more
1.0.0 · Source§

fn map<B, F>(self, f: F) -> Map<Self, F>
where Self: Sized, F: FnMut(Self::Item) -> B,

Takes a closure and creates an iterator which calls that closure on each element. Read more
1.21.0 · Source§

fn for_each<F>(self, f: F)
where Self: Sized, F: FnMut(Self::Item),

Calls a closure on each element of an iterator. Read more
1.0.0 · Source§

fn filter<P>(self, predicate: P) -> Filter<Self, P>
where Self: Sized, P: FnMut(&Self::Item) -> bool,

Creates an iterator which uses a closure to determine if an element should be yielded. Read more
1.0.0 · Source§

fn filter_map<B, F>(self, f: F) -> FilterMap<Self, F>
where Self: Sized, F: FnMut(Self::Item) -> Option<B>,

Creates an iterator that both filters and maps. Read more
1.0.0 · Source§

fn enumerate(self) -> Enumerate<Self>
where Self: Sized,

Creates an iterator which gives the current iteration count as well as the next value. Read more
1.0.0 · Source§

fn peekable(self) -> Peekable<Self>
where Self: Sized,

Creates an iterator which can use the peek and peek_mut methods to look at the next element of the iterator without consuming it. See their documentation for more information. Read more
1.0.0 · Source§

fn skip_while<P>(self, predicate: P) -> SkipWhile<Self, P>
where Self: Sized, P: FnMut(&Self::Item) -> bool,

Creates an iterator that skips elements based on a predicate. Read more
1.0.0 · Source§

fn take_while<P>(self, predicate: P) -> TakeWhile<Self, P>
where Self: Sized, P: FnMut(&Self::Item) -> bool,

Creates an iterator that yields elements based on a predicate. Read more
1.57.0 · Source§

fn map_while<B, P>(self, predicate: P) -> MapWhile<Self, P>
where Self: Sized, P: FnMut(Self::Item) -> Option<B>,

Creates an iterator that both yields elements based on a predicate and maps. Read more
1.0.0 · Source§

fn skip(self, n: usize) -> Skip<Self>
where Self: Sized,

Creates an iterator that skips the first n elements. Read more
1.0.0 · Source§

fn take(self, n: usize) -> Take<Self>
where Self: Sized,

Creates an iterator that yields the first n elements, or fewer if the underlying iterator ends sooner. Read more
1.0.0 · Source§

fn scan<St, B, F>(self, initial_state: St, f: F) -> Scan<Self, St, F>
where Self: Sized, F: FnMut(&mut St, Self::Item) -> Option<B>,

An iterator adapter which, like fold, holds internal state, but unlike fold, produces a new iterator. Read more
1.0.0 · Source§

fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
where Self: Sized, U: IntoIterator, F: FnMut(Self::Item) -> U,

Creates an iterator that works like map, but flattens nested structure. Read more
1.29.0 · Source§

fn flatten(self) -> Flatten<Self>
where Self: Sized, Self::Item: IntoIterator,

Creates an iterator that flattens nested structure. Read more
Source§

fn map_windows<F, R, const N: usize>(self, f: F) -> MapWindows<Self, F, N>
where Self: Sized, F: FnMut(&[Self::Item; N]) -> R,

🔬This is a nightly-only experimental API. (iter_map_windows)
Calls the given function f for each contiguous window of size N over self and returns an iterator over the outputs of f. Like slice::windows(), the windows during mapping overlap as well. Read more
1.0.0 · Source§

fn fuse(self) -> Fuse<Self>
where Self: Sized,

Creates an iterator which ends after the first None. Read more
1.0.0 · Source§

fn inspect<F>(self, f: F) -> Inspect<Self, F>
where Self: Sized, F: FnMut(&Self::Item),

Does something with each element of an iterator, passing the value on. Read more
1.0.0 · Source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adapter for this instance of Iterator. Read more
1.0.0 · Source§

fn collect<B>(self) -> B
where B: FromIterator<Self::Item>, Self: Sized,

Transforms an iterator into a collection. Read more
Source§

fn try_collect<B>( &mut self, ) -> <<Self::Item as Try>::Residual as Residual<B>>::TryType
where Self: Sized, Self::Item: Try, <Self::Item as Try>::Residual: Residual<B>, B: FromIterator<<Self::Item as Try>::Output>,

🔬This is a nightly-only experimental API. (iterator_try_collect)
Fallibly transforms an iterator into a collection, short circuiting if a failure is encountered. Read more
Source§

fn collect_into<E>(self, collection: &mut E) -> &mut E
where E: Extend<Self::Item>, Self: Sized,

🔬This is a nightly-only experimental API. (iter_collect_into)
Collects all the items from an iterator into a collection. Read more
1.0.0 · Source§

fn partition<B, F>(self, f: F) -> (B, B)
where Self: Sized, B: Default + Extend<Self::Item>, F: FnMut(&Self::Item) -> bool,

Consumes an iterator, creating two collections from it. Read more
Source§

fn partition_in_place<'a, T, P>(self, predicate: P) -> usize
where T: 'a, Self: Sized + DoubleEndedIterator<Item = &'a mut T>, P: FnMut(&T) -> bool,

🔬This is a nightly-only experimental API. (iter_partition_in_place)
Reorders the elements of this iterator in-place according to the given predicate, such that all those that return true precede all those that return false. Returns the number of true elements found. Read more
Source§

fn is_partitioned<P>(self, predicate: P) -> bool
where Self: Sized, P: FnMut(Self::Item) -> bool,

🔬This is a nightly-only experimental API. (iter_is_partitioned)
Checks if the elements of this iterator are partitioned according to the given predicate, such that all those that return true precede all those that return false. Read more
1.27.0 · Source§

fn try_fold<B, F, R>(&mut self, init: B, f: F) -> R
where Self: Sized, F: FnMut(B, Self::Item) -> R, R: Try<Output = B>,

An iterator method that applies a function as long as it returns successfully, producing a single, final value. Read more
1.27.0 · Source§

fn try_for_each<F, R>(&mut self, f: F) -> R
where Self: Sized, F: FnMut(Self::Item) -> R, R: Try<Output = ()>,

An iterator method that applies a fallible function to each item in the iterator, stopping at the first error and returning that error. Read more
1.0.0 · Source§

fn fold<B, F>(self, init: B, f: F) -> B
where Self: Sized, F: FnMut(B, Self::Item) -> B,

Folds every element into an accumulator by applying an operation, returning the final result. Read more
1.51.0 · Source§

fn reduce<F>(self, f: F) -> Option<Self::Item>
where Self: Sized, F: FnMut(Self::Item, Self::Item) -> Self::Item,

Reduces the elements to a single one, by repeatedly applying a reducing operation. Read more
Source§

fn try_reduce<R>( &mut self, f: impl FnMut(Self::Item, Self::Item) -> R, ) -> <<R as Try>::Residual as Residual<Option<<R as Try>::Output>>>::TryType
where Self: Sized, R: Try<Output = Self::Item>, <R as Try>::Residual: Residual<Option<Self::Item>>,

🔬This is a nightly-only experimental API. (iterator_try_reduce)
Reduces the elements to a single one by repeatedly applying a reducing operation. If the closure returns a failure, the failure is propagated back to the caller immediately. Read more
1.0.0 · Source§

fn all<F>(&mut self, f: F) -> bool
where Self: Sized, F: FnMut(Self::Item) -> bool,

Tests if every element of the iterator matches a predicate. Read more
1.0.0 · Source§

fn any<F>(&mut self, f: F) -> bool
where Self: Sized, F: FnMut(Self::Item) -> bool,

Tests if any element of the iterator matches a predicate. Read more
1.0.0 · Source§

fn find<P>(&mut self, predicate: P) -> Option<Self::Item>
where Self: Sized, P: FnMut(&Self::Item) -> bool,

Searches for an element of an iterator that satisfies a predicate. Read more
1.30.0 · Source§

fn find_map<B, F>(&mut self, f: F) -> Option<B>
where Self: Sized, F: FnMut(Self::Item) -> Option<B>,

Applies function to the elements of iterator and returns the first non-none result. Read more
Source§

fn try_find<R>( &mut self, f: impl FnMut(&Self::Item) -> R, ) -> <<R as Try>::Residual as Residual<Option<Self::Item>>>::TryType
where Self: Sized, R: Try<Output = bool>, <R as Try>::Residual: Residual<Option<Self::Item>>,

🔬This is a nightly-only experimental API. (try_find)
Applies function to the elements of iterator and returns the first true result or the first error. Read more
1.0.0 · Source§

fn position<P>(&mut self, predicate: P) -> Option<usize>
where Self: Sized, P: FnMut(Self::Item) -> bool,

Searches for an element in an iterator, returning its index. Read more
1.0.0 · Source§

fn rposition<P>(&mut self, predicate: P) -> Option<usize>
where P: FnMut(Self::Item) -> bool, Self: Sized + ExactSizeIterator + DoubleEndedIterator,

Searches for an element in an iterator from the right, returning its index. Read more
1.0.0 · Source§

fn max(self) -> Option<Self::Item>
where Self: Sized, Self::Item: Ord,

Returns the maximum element of an iterator. Read more
1.0.0 · Source§

fn min(self) -> Option<Self::Item>
where Self: Sized, Self::Item: Ord,

Returns the minimum element of an iterator. Read more
1.6.0 · Source§

fn max_by_key<B, F>(self, f: F) -> Option<Self::Item>
where B: Ord, Self: Sized, F: FnMut(&Self::Item) -> B,

Returns the element that gives the maximum value from the specified function. Read more
1.15.0 · Source§

fn max_by<F>(self, compare: F) -> Option<Self::Item>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,

Returns the element that gives the maximum value with respect to the specified comparison function. Read more
1.6.0 · Source§

fn min_by_key<B, F>(self, f: F) -> Option<Self::Item>
where B: Ord, Self: Sized, F: FnMut(&Self::Item) -> B,

Returns the element that gives the minimum value from the specified function. Read more
1.15.0 · Source§

fn min_by<F>(self, compare: F) -> Option<Self::Item>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,

Returns the element that gives the minimum value with respect to the specified comparison function. Read more
1.0.0 · Source§

fn rev(self) -> Rev<Self>
where Self: Sized + DoubleEndedIterator,

Reverses an iterator’s direction. Read more
1.0.0 · Source§

fn unzip<A, B, FromA, FromB>(self) -> (FromA, FromB)
where FromA: Default + Extend<A>, FromB: Default + Extend<B>, Self: Sized + Iterator<Item = (A, B)>,

Converts an iterator of pairs into a pair of containers. Read more
1.36.0 · Source§

fn copied<'a, T>(self) -> Copied<Self>
where T: Copy + 'a, Self: Sized + Iterator<Item = &'a T>,

Creates an iterator which copies all of its elements. Read more
1.0.0 · Source§

fn cloned<'a, T>(self) -> Cloned<Self>
where T: Clone + 'a, Self: Sized + Iterator<Item = &'a T>,

Creates an iterator which clones all of its elements. Read more
1.0.0 · Source§

fn cycle(self) -> Cycle<Self>
where Self: Sized + Clone,

Repeats an iterator endlessly. Read more
Source§

fn array_chunks<const N: usize>(self) -> ArrayChunks<Self, N>
where Self: Sized,

🔬This is a nightly-only experimental API. (iter_array_chunks)
Returns an iterator over N elements of the iterator at a time. Read more
1.11.0 · Source§

fn sum<S>(self) -> S
where Self: Sized, S: Sum<Self::Item>,

Sums the elements of an iterator. Read more
1.11.0 · Source§

fn product<P>(self) -> P
where Self: Sized, P: Product<Self::Item>,

Iterates over the entire iterator, multiplying all the elements Read more
1.5.0 · Source§

fn cmp<I>(self, other: I) -> Ordering
where I: IntoIterator<Item = Self::Item>, Self::Item: Ord, Self: Sized,

Lexicographically compares the elements of this Iterator with those of another. Read more
Source§

fn cmp_by<I, F>(self, other: I, cmp: F) -> Ordering
where Self: Sized, I: IntoIterator, F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Ordering,

🔬This is a nightly-only experimental API. (iter_order_by)
Lexicographically compares the elements of this Iterator with those of another with respect to the specified comparison function. Read more
1.5.0 · Source§

fn partial_cmp<I>(self, other: I) -> Option<Ordering>
where I: IntoIterator, Self::Item: PartialOrd<<I as IntoIterator>::Item>, Self: Sized,

Lexicographically compares the PartialOrd elements of this Iterator with those of another. The comparison works like short-circuit evaluation, returning a result without comparing the remaining elements. As soon as an order can be determined, the evaluation stops and a result is returned. Read more
Source§

fn partial_cmp_by<I, F>(self, other: I, partial_cmp: F) -> Option<Ordering>
where Self: Sized, I: IntoIterator, F: FnMut(Self::Item, <I as IntoIterator>::Item) -> Option<Ordering>,

🔬This is a nightly-only experimental API. (iter_order_by)
Lexicographically compares the elements of this Iterator with those of another with respect to the specified comparison function. Read more
1.5.0 · Source§

fn eq<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialEq<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are equal to those of another. Read more
Source§

fn eq_by<I, F>(self, other: I, eq: F) -> bool
where Self: Sized, I: IntoIterator, F: FnMut(Self::Item, <I as IntoIterator>::Item) -> bool,

🔬This is a nightly-only experimental API. (iter_order_by)
Determines if the elements of this Iterator are equal to those of another with respect to the specified equality function. Read more
1.5.0 · Source§

fn ne<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialEq<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are not equal to those of another. Read more
1.5.0 · Source§

fn lt<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialOrd<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are lexicographically less than those of another. Read more
1.5.0 · Source§

fn le<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialOrd<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are lexicographically less or equal to those of another. Read more
1.5.0 · Source§

fn gt<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialOrd<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are lexicographically greater than those of another. Read more
1.5.0 · Source§

fn ge<I>(self, other: I) -> bool
where I: IntoIterator, Self::Item: PartialOrd<<I as IntoIterator>::Item>, Self: Sized,

Determines if the elements of this Iterator are lexicographically greater than or equal to those of another. Read more
1.82.0 · Source§

fn is_sorted(self) -> bool
where Self: Sized, Self::Item: PartialOrd,

Checks if the elements of this iterator are sorted. Read more
1.82.0 · Source§

fn is_sorted_by<F>(self, compare: F) -> bool
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> bool,

Checks if the elements of this iterator are sorted using the given comparator function. Read more
1.82.0 · Source§

fn is_sorted_by_key<F, K>(self, f: F) -> bool
where Self: Sized, F: FnMut(Self::Item) -> K, K: PartialOrd,

Checks if the elements of this iterator are sorted using the given key extraction function. Read more
§

impl<Sp> LocalSpawn for Box<Sp>
where Sp: LocalSpawn + ?Sized,

§

fn spawn_local_obj( &self, future: LocalFutureObj<'static, ()>, ) -> Result<(), SpawnError>

Spawns a future that will be run to completion. Read more
§

fn status_local(&self) -> Result<(), SpawnError>

Determines whether the executor is able to spawn new tasks. Read more
1.0.0 · Source§

impl<T, A> Ord for Box<T, A>
where T: Ord + ?Sized, A: Allocator,

Source§

fn cmp(&self, other: &Box<T, A>) -> Ordering

This method returns an Ordering between self and other. Read more
1.21.0 · Source§

fn max(self, other: Self) -> Self
where Self: Sized,

Compares and returns the maximum of two values. Read more
1.21.0 · Source§

fn min(self, other: Self) -> Self
where Self: Sized,

Compares and returns the minimum of two values. Read more
1.50.0 · Source§

fn clamp(self, min: Self, max: Self) -> Self
where Self: Sized,

Restrict a value to a certain interval. Read more
§

impl PacketKey for Box<dyn PacketKey>

§

fn encrypt(&self, packet: u64, buf: &mut [u8], header_len: usize)

Encrypt the packet payload with the given packet number
§

fn decrypt( &self, packet: u64, header: &[u8], payload: &mut BytesMut, ) -> Result<(), CryptoError>

Decrypt the packet payload with the given packet number
§

fn tag_len(&self) -> usize

The length of the AEAD tag appended to packets on encryption
§

fn confidentiality_limit(&self) -> u64

Maximum number of packets that may be sent using a single key
§

fn integrity_limit(&self) -> u64

Maximum number of incoming packets that may fail decryption before the connection must be abandoned
§

impl ParallelExtend<Box<str>> for String

Extends a string with boxed strings from a parallel iterator.

§

fn par_extend<I>(&mut self, par_iter: I)
where I: IntoParallelIterator<Item = Box<str>>,

Extends an instance of the collection with the elements drawn from the parallel iterator par_iter. Read more
§

impl<T> Parser for Box<T>
where T: Parser,

§

fn parse() -> Box<T>

Parse from std::env::args_os(), [exit][Error::exit] on error.
§

fn try_parse() -> Result<Box<T>, Error>

Parse from std::env::args_os(), return Err on error.
§

fn parse_from<I, It>(itr: I) -> Box<T>
where I: IntoIterator<Item = It>, It: Into<OsString> + Clone,

Parse from iterator, [exit][Error::exit] on error.
§

fn try_parse_from<I, It>(itr: I) -> Result<Box<T>, Error>
where I: IntoIterator<Item = It>, It: Into<OsString> + Clone,

Parse from iterator, return Err on error.
§

fn update_from<I, T>(&mut self, itr: I)
where I: IntoIterator<Item = T>, T: Into<OsString> + Clone,

Update from iterator, [exit][Error::exit] on error. Read more
§

fn try_update_from<I, T>(&mut self, itr: I) -> Result<(), Error>
where I: IntoIterator<Item = T>, T: Into<OsString> + Clone,

Update from iterator, return Err on error.
1.0.0 · Source§

impl<T, A> PartialEq for Box<T, A>
where T: PartialEq + ?Sized, A: Allocator,

Source§

fn eq(&self, other: &Box<T, A>) -> bool

Tests for self and other values to be equal, and is used by ==.
Source§

fn ne(&self, other: &Box<T, A>) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
1.0.0 · Source§

impl<T, A> PartialOrd for Box<T, A>
where T: PartialOrd + ?Sized, A: Allocator,

Source§

fn partial_cmp(&self, other: &Box<T, A>) -> Option<Ordering>

This method returns an ordering between self and other values if one exists. Read more
Source§

fn lt(&self, other: &Box<T, A>) -> bool

Tests less than (for self and other) and is used by the < operator. Read more
Source§

fn le(&self, other: &Box<T, A>) -> bool

Tests less than or equal to (for self and other) and is used by the <= operator. Read more
Source§

fn ge(&self, other: &Box<T, A>) -> bool

Tests greater than or equal to (for self and other) and is used by the >= operator. Read more
Source§

fn gt(&self, other: &Box<T, A>) -> bool

Tests greater than (for self and other) and is used by the > operator. Read more
1.0.0 · Source§

impl<T, A> Pointer for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter. Read more
1.0.0 · Source§

impl<R> Read for Box<R>
where R: Read + ?Sized,

Source§

fn read(&mut self, buf: &mut [u8]) -> Result<usize, Error>

Pull some bytes from this source into the specified buffer, returning how many bytes were read. Read more
Source§

fn read_buf(&mut self, cursor: BorrowedCursor<'_>) -> Result<(), Error>

🔬This is a nightly-only experimental API. (read_buf)
Pull some bytes from this source into the specified buffer. Read more
Source§

fn read_vectored(&mut self, bufs: &mut [IoSliceMut<'_>]) -> Result<usize, Error>

Like read, except that it reads into a slice of buffers. Read more
Source§

fn is_read_vectored(&self) -> bool

🔬This is a nightly-only experimental API. (can_vector)
Determines if this Reader has an efficient read_vectored implementation. Read more
Source§

fn read_to_end(&mut self, buf: &mut Vec<u8>) -> Result<usize, Error>

Reads all bytes until EOF in this source, placing them into buf. Read more
Source§

fn read_to_string(&mut self, buf: &mut String) -> Result<usize, Error>

Reads all bytes until EOF in this source, appending them to buf. Read more
Source§

fn read_exact(&mut self, buf: &mut [u8]) -> Result<(), Error>

Reads the exact number of bytes required to fill buf. Read more
Source§

fn read_buf_exact(&mut self, cursor: BorrowedCursor<'_>) -> Result<(), Error>

🔬This is a nightly-only experimental API. (read_buf)
Reads the exact number of bytes required to fill cursor. Read more
1.0.0 · Source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adapter for this instance of Read. Read more
1.0.0 · Source§

fn bytes(self) -> Bytes<Self>
where Self: Sized,

Transforms this Read instance to an Iterator over its bytes. Read more
1.0.0 · Source§

fn chain<R>(self, next: R) -> Chain<Self, R>
where R: Read, Self: Sized,

Creates an adapter which will chain this stream with another. Read more
1.0.0 · Source§

fn take(self, limit: u64) -> Take<Self>
where Self: Sized,

Creates an adapter which will read at most limit bytes from it. Read more
Source§

fn read_array<const N: usize>(&mut self) -> Result<[u8; N], Error>
where Self: Sized,

🔬This is a nightly-only experimental API. (read_array)
Read and return a fixed array of bytes from this source. Read more
1.0.0 · Source§

impl<S> Seek for Box<S>
where S: Seek + ?Sized,

Source§

fn seek(&mut self, pos: SeekFrom) -> Result<u64, Error>

Seek to an offset, in bytes, in a stream. Read more
Source§

fn rewind(&mut self) -> Result<(), Error>

Rewind to the beginning of a stream. Read more
Source§

fn stream_len(&mut self) -> Result<u64, Error>

🔬This is a nightly-only experimental API. (seek_stream_len)
Returns the length of this stream (in bytes). Read more
Source§

fn stream_position(&mut self) -> Result<u64, Error>

Returns the current seek position from the start of the stream. Read more
Source§

fn seek_relative(&mut self, offset: i64) -> Result<(), Error>

Seeks relative to the current position. Read more
Source§

impl<T> Serialize for Box<T>
where T: Serialize + ?Sized,

Available on crate features std or alloc only.
Source§

fn serialize<S>( &self, serializer: S, ) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error>
where S: Serializer,

Serialize this value into the given Serde serializer. Read more
§

impl<B, A> SetLen for Box<B, A>
where B: SetLen + ?Sized, A: Allocator + 'static,

§

unsafe fn set_len(&mut self, len: usize)

Set the buffer length. Read more
§

unsafe fn advance_to(&mut self, len: usize)
where Self: IoBuf,

Set the buffer length to len. If len is less than the current length, this operation is a no-op. Read more
§

unsafe fn advance_vec_to(&mut self, len: usize)
where Self: IoVectoredBuf,

Set the vector buffer’s total length to len. If len is less than the current total length, this operation is a no-op. Read more
§

fn clear(&mut self)
where Self: IoBuf,

Clear the buffer, setting its length to 0 without touching its content or capacity.
§

impl<Sp> Spawn for Box<Sp>
where Sp: Spawn + ?Sized,

§

fn spawn_obj(&self, future: FutureObj<'static, ()>) -> Result<(), SpawnError>

Spawns a future that will be run to completion. Read more
§

fn status(&self) -> Result<(), SpawnError>

Determines whether the executor is able to spawn new tasks. Read more
§

impl<S> Stream for Box<S>
where S: Stream + Unpin + ?Sized,

§

type Item = <S as Stream>::Item

Values yielded by the stream.
§

fn poll_next( self: Pin<&mut Box<S>>, cx: &mut Context<'_>, ) -> Poll<Option<<Box<S> as Stream>::Item>>

Attempt to pull out the next value of this stream, registering the current task for wakeup if the value is not yet available, and returning None if the stream is exhausted. Read more
§

fn size_hint(&self) -> (usize, Option<usize>)

Returns the bounds on the remaining length of the stream. Read more
§

impl<T> Subcommand for Box<T>
where T: Subcommand,

§

fn augment_subcommands(cmd: Command) -> Command

Append to [Command] so it can instantiate Self via [FromArgMatches::from_arg_matches_mut] Read more
§

fn augment_subcommands_for_update(cmd: Command) -> Command

Append to [Command] so it can instantiate self via [FromArgMatches::update_from_arg_matches_mut] Read more
§

fn has_subcommand(name: &str) -> bool

Test whether Self can parse a specific subcommand
§

impl<S> Subscriber for Box<S>
where S: Subscriber + ?Sized,

§

fn register_callsite(&self, metadata: &'static Metadata<'static>) -> Interest

Registers a new callsite with this subscriber, returning whether or not the subscriber is interested in being notified about the callsite. Read more
§

fn enabled(&self, metadata: &Metadata<'_>) -> bool

Returns true if a span or event with the specified metadata would be recorded. Read more
§

fn max_level_hint(&self) -> Option<LevelFilter>

Returns the highest verbosity level that this Subscriber will enable, or None, if the subscriber does not implement level-based filtering or chooses not to implement this method. Read more
§

fn new_span(&self, span: &Attributes<'_>) -> Id

Visit the construction of a new span, returning a new span ID for the span being constructed. Read more
§

fn record(&self, span: &Id, values: &Record<'_>)

Record a set of values on a span. Read more
§

fn record_follows_from(&self, span: &Id, follows: &Id)

Adds an indication that span follows from the span with the id follows. Read more
§

fn event_enabled(&self, event: &Event<'_>) -> bool

Determine if an [Event] should be recorded. Read more
§

fn event(&self, event: &Event<'_>)

Records that an Event has occurred. Read more
§

fn enter(&self, span: &Id)

Records that a span has been entered. Read more
§

fn exit(&self, span: &Id)

Records that a span has been exited. Read more
§

fn clone_span(&self, id: &Id) -> Id

Notifies the subscriber that a span ID has been cloned. Read more
§

fn try_close(&self, id: Id) -> bool

Notifies the subscriber that a span ID has been dropped, and returns true if there are now 0 IDs that refer to that span. Read more
§

fn drop_span(&self, id: Id)

👎Deprecated since 0.1.2: use Subscriber::try_close instead
This method is deprecated. Read more
§

fn current_span(&self) -> Current

Returns a type representing this subscriber’s view of the current span. Read more
§

unsafe fn downcast_raw(&self, id: TypeId) -> Option<*const ()>

If self is the same type as the provided TypeId, returns an untyped *const pointer to that type. Otherwise, returns None. Read more
§

fn on_register_dispatch(&self, subscriber: &Dispatch)

Invoked when this subscriber becomes a [Dispatch]. Read more
1.43.0 · Source§

impl<T, const N: usize> TryFrom<Box<[T]>> for Box<[T; N]>

Source§

fn try_from( boxed_slice: Box<[T]>, ) -> Result<Box<[T; N]>, <Box<[T; N]> as TryFrom<Box<[T]>>>::Error>

Attempts to convert a Box<[T]> into a Box<[T; N]>.

The conversion occurs in-place and does not require a new memory allocation.

§Errors

Returns the old Box<[T]> in the Err variant if boxed_slice.len() does not equal N.

Source§

type Error = Box<[T]>

The type returned in the event of a conversion error.
1.66.0 · Source§

impl<T, const N: usize> TryFrom<Vec<T>> for Box<[T; N]>

Available on non-no_global_oom_handling only.
Source§

fn try_from( vec: Vec<T>, ) -> Result<Box<[T; N]>, <Box<[T; N]> as TryFrom<Vec<T>>>::Error>

Attempts to convert a Vec<T> into a Box<[T; N]>.

Like Vec::into_boxed_slice, this is in-place if vec.capacity() == N, but will require a reallocation otherwise.

§Errors

Returns the original Vec<T> in the Err variant if boxed_slice.len() does not equal N.

§Examples

This can be used with vec! to create an array on the heap:

let state: Box<[f32; 100]> = vec![1.0; 100].try_into().unwrap();
assert_eq!(state.len(), 100);
Source§

type Error = Vec<T>

The type returned in the event of a conversion error.
§

impl<'a, T, F> UnsafeFutureObj<'a, T> for Box<F>
where F: Future<Output = T> + 'a,

§

fn into_raw(self) -> *mut dyn Future<Output = T> + 'a

Convert an owned instance into a (conceptually owned) fat pointer. Read more
§

unsafe fn drop(ptr: *mut dyn Future<Output = T> + 'a)

Drops the future represented by the given fat pointer. Read more
§

impl<'a, T> UnsafeFutureObj<'a, T> for Box<dyn Future<Output = T> + 'a>
where T: 'a,

§

fn into_raw(self) -> *mut dyn Future<Output = T> + 'a

Convert an owned instance into a (conceptually owned) fat pointer. Read more
§

unsafe fn drop(ptr: *mut dyn Future<Output = T> + 'a)

Drops the future represented by the given fat pointer. Read more
§

impl<'a, T> UnsafeFutureObj<'a, T> for Box<dyn Future<Output = T> + Send + 'a>
where T: 'a,

§

fn into_raw(self) -> *mut dyn Future<Output = T> + 'a

Convert an owned instance into a (conceptually owned) fat pointer. Read more
§

unsafe fn drop(ptr: *mut dyn Future<Output = T> + 'a)

Drops the future represented by the given fat pointer. Read more
§

impl<T> Value for Box<T>
where T: Value + ?Sized,

§

fn record(&self, key: &Field, visitor: &mut dyn Visit)

Visits this value with the given Visitor.
§

impl ValueParserFactory for Box<OsStr>

§

type Parser = MapValueParser<OsStringValueParser, fn(OsString) -> Box<OsStr>>

Generated parser, usually [ValueParser]. Read more
§

fn value_parser() -> <Box<OsStr> as ValueParserFactory>::Parser

Create the specified [Self::Parser]
§

impl ValueParserFactory for Box<Path>

§

type Parser = MapValueParser<PathBufValueParser, fn(PathBuf) -> Box<Path>>

Generated parser, usually [ValueParser]. Read more
§

fn value_parser() -> <Box<Path> as ValueParserFactory>::Parser

Create the specified [Self::Parser]
§

impl<T> ValueParserFactory for Box<T>
where T: ValueParserFactory + Send + Sync + Clone, <T as ValueParserFactory>::Parser: TypedValueParser<Value = T>,

§

type Parser = MapValueParser<<T as ValueParserFactory>::Parser, fn(T) -> Box<T>>

Generated parser, usually [ValueParser]. Read more
§

fn value_parser() -> <Box<T> as ValueParserFactory>::Parser

Create the specified [Self::Parser]
§

impl ValueParserFactory for Box<str>

§

type Parser = MapValueParser<StringValueParser, fn(String) -> Box<str>>

Generated parser, usually [ValueParser]. Read more
§

fn value_parser() -> <Box<str> as ValueParserFactory>::Parser

Create the specified [Self::Parser]
1.0.0 · Source§

impl<W> Write for Box<W>
where W: Write + ?Sized,

Source§

fn write(&mut self, buf: &[u8]) -> Result<usize, Error>

Writes a buffer into this writer, returning how many bytes were written. Read more
Source§

fn write_vectored(&mut self, bufs: &[IoSlice<'_>]) -> Result<usize, Error>

Like write, except that it writes from a slice of buffers. Read more
Source§

fn is_write_vectored(&self) -> bool

🔬This is a nightly-only experimental API. (can_vector)
Determines if this Writer has an efficient write_vectored implementation. Read more
Source§

fn flush(&mut self) -> Result<(), Error>

Flushes this output stream, ensuring that all intermediately buffered contents reach their destination. Read more
Source§

fn write_all(&mut self, buf: &[u8]) -> Result<(), Error>

Attempts to write an entire buffer into this writer. Read more
Source§

fn write_all_vectored(&mut self, bufs: &mut [IoSlice<'_>]) -> Result<(), Error>

🔬This is a nightly-only experimental API. (write_all_vectored)
Attempts to write multiple buffers into this writer. Read more
Source§

fn write_fmt(&mut self, fmt: Arguments<'_>) -> Result<(), Error>

Writes a formatted string into this writer, returning any error encountered. Read more
1.0.0 · Source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adapter for this instance of Write. Read more
§

impl<Z> Zeroize for Box<[Z]>
where Z: Zeroize,

Available on crate feature alloc only.
§

fn zeroize(&mut self)

Unlike Vec, Box<[Z]> cannot reallocate, so we can be sure that we are not leaving values on the heap.

§

impl Zeroize for Box<str>

Available on crate feature alloc only.
§

fn zeroize(&mut self)

Zero out this object from memory using Rust intrinsics which ensure the zeroization operation is not “optimized away” by the compiler.
Source§

impl<T, U, A> CoerceUnsized<Box<U, A>> for Box<T, A>
where T: Unsize<U> + ?Sized, A: Allocator, U: ?Sized,

Source§

impl<T, A> DerefPure for Box<T, A>
where A: Allocator, T: ?Sized,

Source§

impl<T, U> DispatchFromDyn<Box<U>> for Box<T>
where T: Unsize<U> + ?Sized, U: ?Sized,

1.0.0 · Source§

impl<T, A> Eq for Box<T, A>
where T: Eq + ?Sized, A: Allocator,

1.26.0 · Source§

impl<I, A> FusedIterator for Box<I, A>
where I: FusedIterator + ?Sized, A: Allocator,

1.80.0 · Source§

impl<'a, I, A> !Iterator for &'a Box<[I], A>
where A: Allocator,

This implementation is required to make sure that the &Box<[I]>: IntoIterator implementation doesn’t overlap with IntoIterator for T where T: Iterator blanket.

1.80.0 · Source§

impl<'a, I, A> !Iterator for &'a mut Box<[I], A>
where A: Allocator,

This implementation is required to make sure that the &mut Box<[I]>: IntoIterator implementation doesn’t overlap with IntoIterator for T where T: Iterator blanket.

1.80.0 · Source§

impl<I, A> !Iterator for Box<[I], A>
where A: Allocator,

This implementation is required to make sure that the Box<[I]>: IntoIterator implementation doesn’t overlap with IntoIterator for T where T: Iterator blanket.

Source§

impl<T, A> PinCoerceUnsized for Box<T, A>
where A: Allocator, T: ?Sized,

1.33.0 · Source§

impl<T, A> Unpin for Box<T, A>
where A: Allocator, T: ?Sized,

§

impl<Z> ZeroizeOnDrop for Box<[Z]>
where Z: ZeroizeOnDrop,

Available on crate feature alloc only.

Auto Trait Implementations§

§

impl<T, A> Freeze for Box<T, A>
where A: Freeze, T: ?Sized,

§

impl<T, A> RefUnwindSafe for Box<T, A>

§

impl<T, A> Send for Box<T, A>
where A: Send, T: Send + ?Sized,

§

impl<T, A> Sync for Box<T, A>
where A: Sync, T: Sync + ?Sized,

§

impl<T, A> UnwindSafe for Box<T, A>
where A: UnwindSafe, T: UnwindSafe + ?Sized,

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
§

impl<R> AsyncBufReadExt for R
where R: AsyncBufRead + ?Sized,

§

fn fill_buf(&mut self) -> FillBuf<'_, Self>
where Self: Unpin,

Creates a future which will wait for a non-empty buffer to be available from this I/O object or EOF to be reached. Read more
§

fn consume_unpin(&mut self, amt: usize)
where Self: Unpin,

A convenience for calling [AsyncBufRead::consume] on Unpin IO types. Read more
§

fn read_until<'a>( &'a mut self, byte: u8, buf: &'a mut Vec<u8>, ) -> ReadUntil<'a, Self>
where Self: Unpin,

Creates a future which will read all the bytes associated with this I/O object into buf until the delimiter byte or EOF is reached. This method is the async equivalent to BufRead::read_until. Read more
§

fn read_line<'a>(&'a mut self, buf: &'a mut String) -> ReadLine<'a, Self>
where Self: Unpin,

Creates a future which will read all the bytes associated with this I/O object into buf until a newline (the 0xA byte) or EOF is reached, This method is the async equivalent to BufRead::read_line. Read more
§

fn lines(self) -> Lines<Self>
where Self: Sized,

Returns a stream over the lines of this reader. This method is the async equivalent to BufRead::lines. Read more
Source§

impl<A> AsyncReadAtExt for A
where A: AsyncReadAt + ?Sized,

Source§

async fn read_exact_at<T>(&self, buf: T, pos: u64) -> BufResult<(), T>
where T: IoBufMut,

Read the exact number of bytes required to fill buffer. Read more
Source§

async fn read_to_string_at( &mut self, buf: String, pos: u64, ) -> BufResult<usize, String>

Read all bytes as String until EOF in this source, placing them into buffer.
Source§

async fn read_to_end_at<A>( &self, buffer: Vec<u8, A>, pos: u64, ) -> BufResult<usize, Vec<u8, A>>
where A: Allocator + 'static,

Read all bytes until EOF in this source, placing them into buffer. Read more
Source§

async fn read_vectored_exact_at<T>(&self, buf: T, pos: u64) -> BufResult<(), T>

Like AsyncReadExt::read_vectored_exact, expect that it reads at a specified position.
Source§

impl<A> AsyncReadExt for A
where A: AsyncRead + ?Sized,

Source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adaptor for this instance of AsyncRead. Read more
Source§

async fn append<T>(&mut self, buf: T) -> BufResult<usize, T>
where T: IoBufMut,

Same as AsyncRead::read, but it appends data to the end of the buffer; in other words, it read to the beginning of the uninitialized area.
Source§

async fn read_exact<T>(&mut self, buf: T) -> BufResult<(), T>
where T: IoBufMut,

Read the exact number of bytes required to fill the buf.
Source§

async fn read_to_string(&mut self, buf: String) -> BufResult<usize, String>

Read all bytes as String until underlying reader reaches EOF.
Source§

async fn read_to_end<A>( &mut self, buf: Vec<u8, A>, ) -> BufResult<usize, Vec<u8, A>>
where A: Allocator + 'static,

Read all bytes until underlying reader reaches EOF.
Source§

async fn read_vectored_exact<T>(&mut self, buf: T) -> BufResult<(), T>

Read the exact number of bytes required to fill the vectored buf.
Source§

fn take(self, limit: u64) -> Take<Self>
where Self: Sized,

Creates an adaptor which reads at most limit bytes from it. Read more
Source§

async fn read_u8(&mut self) -> Result<u8, Error>

Read a big endian u8 from the underlying reader.
Source§

async fn read_u8_le(&mut self) -> Result<u8, Error>

Read a little endian u8 from the underlying reader.
Source§

async fn read_u16(&mut self) -> Result<u16, Error>

Read a big endian u16 from the underlying reader.
Source§

async fn read_u16_le(&mut self) -> Result<u16, Error>

Read a little endian u16 from the underlying reader.
Source§

async fn read_u32(&mut self) -> Result<u32, Error>

Read a big endian u32 from the underlying reader.
Source§

async fn read_u32_le(&mut self) -> Result<u32, Error>

Read a little endian u32 from the underlying reader.
Source§

async fn read_u64(&mut self) -> Result<u64, Error>

Read a big endian u64 from the underlying reader.
Source§

async fn read_u64_le(&mut self) -> Result<u64, Error>

Read a little endian u64 from the underlying reader.
Source§

async fn read_u128(&mut self) -> Result<u128, Error>

Read a big endian u128 from the underlying reader.
Source§

async fn read_u128_le(&mut self) -> Result<u128, Error>

Read a little endian u128 from the underlying reader.
Source§

async fn read_i8(&mut self) -> Result<i8, Error>

Read a big endian i8 from the underlying reader.
Source§

async fn read_i8_le(&mut self) -> Result<i8, Error>

Read a little endian i8 from the underlying reader.
Source§

async fn read_i16(&mut self) -> Result<i16, Error>

Read a big endian i16 from the underlying reader.
Source§

async fn read_i16_le(&mut self) -> Result<i16, Error>

Read a little endian i16 from the underlying reader.
Source§

async fn read_i32(&mut self) -> Result<i32, Error>

Read a big endian i32 from the underlying reader.
Source§

async fn read_i32_le(&mut self) -> Result<i32, Error>

Read a little endian i32 from the underlying reader.
Source§

async fn read_i64(&mut self) -> Result<i64, Error>

Read a big endian i64 from the underlying reader.
Source§

async fn read_i64_le(&mut self) -> Result<i64, Error>

Read a little endian i64 from the underlying reader.
Source§

async fn read_i128(&mut self) -> Result<i128, Error>

Read a big endian i128 from the underlying reader.
Source§

async fn read_i128_le(&mut self) -> Result<i128, Error>

Read a little endian i128 from the underlying reader.
Source§

async fn read_f32(&mut self) -> Result<f32, Error>

Read a big endian f32 from the underlying reader.
Source§

async fn read_f32_le(&mut self) -> Result<f32, Error>

Read a little endian f32 from the underlying reader.
Source§

async fn read_f64(&mut self) -> Result<f64, Error>

Read a big endian f64 from the underlying reader.
Source§

async fn read_f64_le(&mut self) -> Result<f64, Error>

Read a little endian f64 from the underlying reader.
§

impl<R> AsyncReadExt for R
where R: AsyncRead + ?Sized,

§

fn chain<R>(self, next: R) -> Chain<Self, R>
where Self: Sized, R: AsyncRead,

Creates an adaptor which will chain this stream with another. Read more
§

fn read<'a>(&'a mut self, buf: &'a mut [u8]) -> Read<'a, Self>
where Self: Unpin,

Tries to read some bytes directly into the given buf in asynchronous manner, returning a future type. Read more
§

fn read_vectored<'a>( &'a mut self, bufs: &'a mut [IoSliceMut<'a>], ) -> ReadVectored<'a, Self>
where Self: Unpin,

Creates a future which will read from the AsyncRead into bufs using vectored IO operations. Read more
§

fn read_exact<'a>(&'a mut self, buf: &'a mut [u8]) -> ReadExact<'a, Self>
where Self: Unpin,

Creates a future which will read exactly enough bytes to fill buf, returning an error if end of file (EOF) is hit sooner. Read more
§

fn read_to_end<'a>(&'a mut self, buf: &'a mut Vec<u8>) -> ReadToEnd<'a, Self>
where Self: Unpin,

Creates a future which will read all the bytes from this AsyncRead. Read more
§

fn read_to_string<'a>( &'a mut self, buf: &'a mut String, ) -> ReadToString<'a, Self>
where Self: Unpin,

Creates a future which will read all the bytes from this AsyncRead. Read more
§

fn split(self) -> (ReadHalf<Self>, WriteHalf<Self>)
where Self: Sized + AsyncWrite,

Helper method for splitting this read/write object into two halves. Read more
§

fn take(self, limit: u64) -> Take<Self>
where Self: Sized,

Creates an AsyncRead adapter which will read at most limit bytes from the underlying reader. Read more
§

impl<S> AsyncSeekExt for S
where S: AsyncSeek + ?Sized,

§

fn seek(&mut self, pos: SeekFrom) -> Seek<'_, Self>
where Self: Unpin,

Creates a future which will seek an IO object, and then yield the new position in the object and the object itself. Read more
§

fn stream_position(&mut self) -> Seek<'_, Self>
where Self: Unpin,

Creates a future which will return the current seek position from the start of the stream. Read more
Source§

impl<A> AsyncWriteAtExt for A
where A: AsyncWriteAt + ?Sized,

Source§

async fn write_all_at<T>(&mut self, buf: T, pos: u64) -> BufResult<(), T>
where T: IoBuf,

Like AsyncWriteAt::write_at, except that it tries to write the entire contents of the buffer into this writer.
Source§

async fn write_vectored_all_at<T>( &mut self, buf: T, pos: u64, ) -> BufResult<(), T>
where T: IoVectoredBuf,

Like AsyncWriteAt::write_vectored_at, expect that it tries to write the entire contents of the buffer into this writer.
Source§

impl<A> AsyncWriteExt for A
where A: AsyncWrite + ?Sized,

Source§

fn by_ref(&mut self) -> &mut Self
where Self: Sized,

Creates a “by reference” adaptor for this instance of AsyncWrite. Read more
Source§

async fn write_all<T>(&mut self, buf: T) -> BufResult<(), T>
where T: IoBuf,

Write the entire contents of a buffer into this writer.
Source§

async fn write_vectored_all<T>(&mut self, buf: T) -> BufResult<(), T>
where T: IoVectoredBuf,

Write the entire contents of a buffer into this writer. Like AsyncWrite::write_vectored, except that it tries to write the entire contents of the buffer into this writer.
Source§

async fn write_u8(&mut self, num: u8) -> Result<(), Error>

Write a big endian u8 into the underlying writer.
Source§

async fn write_u8_le(&mut self, num: u8) -> Result<(), Error>

Write a little endian u8 into the underlying writer.
Source§

async fn write_u16(&mut self, num: u16) -> Result<(), Error>

Write a big endian u16 into the underlying writer.
Source§

async fn write_u16_le(&mut self, num: u16) -> Result<(), Error>

Write a little endian u16 into the underlying writer.
Source§

async fn write_u32(&mut self, num: u32) -> Result<(), Error>

Write a big endian u32 into the underlying writer.
Source§

async fn write_u32_le(&mut self, num: u32) -> Result<(), Error>

Write a little endian u32 into the underlying writer.
Source§

async fn write_u64(&mut self, num: u64) -> Result<(), Error>

Write a big endian u64 into the underlying writer.
Source§

async fn write_u64_le(&mut self, num: u64) -> Result<(), Error>

Write a little endian u64 into the underlying writer.
Source§

async fn write_u128(&mut self, num: u128) -> Result<(), Error>

Write a big endian u128 into the underlying writer.
Source§

async fn write_u128_le(&mut self, num: u128) -> Result<(), Error>

Write a little endian u128 into the underlying writer.
Source§

async fn write_i8(&mut self, num: i8) -> Result<(), Error>

Write a big endian i8 into the underlying writer.
Source§

async fn write_i8_le(&mut self, num: i8) -> Result<(), Error>

Write a little endian i8 into the underlying writer.
Source§

async fn write_i16(&mut self, num: i16) -> Result<(), Error>

Write a big endian i16 into the underlying writer.
Source§

async fn write_i16_le(&mut self, num: i16) -> Result<(), Error>

Write a little endian i16 into the underlying writer.
Source§

async fn write_i32(&mut self, num: i32) -> Result<(), Error>

Write a big endian i32 into the underlying writer.
Source§

async fn write_i32_le(&mut self, num: i32) -> Result<(), Error>

Write a little endian i32 into the underlying writer.
Source§

async fn write_i64(&mut self, num: i64) -> Result<(), Error>

Write a big endian i64 into the underlying writer.
Source§

async fn write_i64_le(&mut self, num: i64) -> Result<(), Error>

Write a little endian i64 into the underlying writer.
Source§

async fn write_i128(&mut self, num: i128) -> Result<(), Error>

Write a big endian i128 into the underlying writer.
Source§

async fn write_i128_le(&mut self, num: i128) -> Result<(), Error>

Write a little endian i128 into the underlying writer.
Source§

async fn write_f32(&mut self, num: f32) -> Result<(), Error>

Write a big endian f32 into the underlying writer.
Source§

async fn write_f32_le(&mut self, num: f32) -> Result<(), Error>

Write a little endian f32 into the underlying writer.
Source§

async fn write_f64(&mut self, num: f64) -> Result<(), Error>

Write a big endian f64 into the underlying writer.
Source§

async fn write_f64_le(&mut self, num: f64) -> Result<(), Error>

Write a little endian f64 into the underlying writer.
§

impl<W> AsyncWriteExt for W
where W: AsyncWrite + ?Sized,

§

fn flush(&mut self) -> Flush<'_, Self>
where Self: Unpin,

Creates a future which will entirely flush this AsyncWrite. Read more
§

fn close(&mut self) -> Close<'_, Self>
where Self: Unpin,

Creates a future which will entirely close this AsyncWrite.
§

fn write<'a>(&'a mut self, buf: &'a [u8]) -> Write<'a, Self>
where Self: Unpin,

Creates a future which will write bytes from buf into the object. Read more
§

fn write_vectored<'a>( &'a mut self, bufs: &'a [IoSlice<'a>], ) -> WriteVectored<'a, Self>
where Self: Unpin,

Creates a future which will write bytes from bufs into the object using vectored IO operations. Read more
§

fn write_all<'a>(&'a mut self, buf: &'a [u8]) -> WriteAll<'a, Self>
where Self: Unpin,

Write data into this object. Read more
§

fn into_sink<Item>(self) -> IntoSink<Self, Item>
where Item: AsRef<[u8]>, Self: Sized,

Available on crate feature sink only.
Allow using an [AsyncWrite] as a Sink<Item: AsRef<[u8]>>. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
§

impl<T> BufExt for T
where T: Buf,

§

fn get<U>(&mut self) -> Result<U, UnexpectedEnd>
where U: Decode,

§

fn get_var(&mut self) -> Result<u64, UnexpectedEnd>

§

impl<T> BufExt for T
where T: Buf,

§

fn get_var(&mut self) -> Result<u64, UnexpectedEnd>

§

impl<T> BufMutExt for T
where T: BufMut,

§

fn write<U>(&mut self, x: U)
where U: Encode,

§

fn write_var(&mut self, x: u64)

§

impl<T> BufMutExt for T
where T: BufMut,

§

fn write_var(&mut self, x: u64)

§

impl<F> Callback for F

§

fn on_request( self, request: &Request<()>, response: Response<()>, ) -> Result<Response<()>, Response<Option<String>>>

Called whenever the server read the request from the client and is ready to reply to it. May return additional reply headers. Returning an error resulting in rejecting the incoming connection.
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dest: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dest. Read more
§

impl<C, T> CoordTranslate for T
where C: CoordTranslate, T: Deref<Target = C>,

§

type From = <C as CoordTranslate>::From

Specifies the object to be translated from
§

fn translate(&self, from: &<T as CoordTranslate>::From) -> (i32, i32)

Translate the guest coordinate to the guest coordinate
§

fn depth(&self, _from: &Self::From) -> i32

Get the Z-value of current coordinate
§

impl<F> Dispatchable for F
where F: FnOnce() + Send + 'static,

§

fn run(self: Box<F>)

Run the dispatchable
Source§

impl<T> From<!> for T

Source§

fn from(t: !) -> T

Converts to this type from the input type.
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

§

impl<T> FutureExt for T
where T: Future + ?Sized,

§

fn map<U, F>(self, f: F) -> Map<Self, F>
where F: FnOnce(Self::Output) -> U, Self: Sized,

Map this future’s output to a different type, returning a new future of the resulting type. Read more
§

fn map_into<U>(self) -> MapInto<Self, U>
where Self::Output: Into<U>, Self: Sized,

Map this future’s output to a different type, returning a new future of the resulting type. Read more
§

fn then<Fut, F>(self, f: F) -> Then<Self, Fut, F>
where F: FnOnce(Self::Output) -> Fut, Fut: Future, Self: Sized,

Chain on a computation for when a future finished, passing the result of the future to the provided closure f. Read more
§

fn left_future<B>(self) -> Either<Self, B>
where B: Future<Output = Self::Output>, Self: Sized,

Wrap this future in an Either future, making it the left-hand variant of that Either. Read more
§

fn right_future<A>(self) -> Either<A, Self>
where A: Future<Output = Self::Output>, Self: Sized,

Wrap this future in an Either future, making it the right-hand variant of that Either. Read more
§

fn into_stream(self) -> IntoStream<Self>
where Self: Sized,

Convert this future into a single element stream. Read more
§

fn flatten(self) -> Flatten<Self>
where Self::Output: Future, Self: Sized,

Flatten the execution of this future when the output of this future is itself another future. Read more
§

fn flatten_stream(self) -> FlattenStream<Self>
where Self::Output: Stream, Self: Sized,

Flatten the execution of this future when the successful result of this future is a stream. Read more
§

fn fuse(self) -> Fuse<Self>
where Self: Sized,

Fuse a future such that poll will never again be called once it has completed. This method can be used to turn any Future into a FusedFuture. Read more
§

fn inspect<F>(self, f: F) -> Inspect<Self, F>
where F: FnOnce(&Self::Output), Self: Sized,

Do something with the output of a future before passing it on. Read more
§

fn catch_unwind(self) -> CatchUnwind<Self>
where Self: Sized + UnwindSafe,

Available on crate feature std only.
Catches unwinding panics while polling the future. Read more
§

fn shared(self) -> Shared<Self>
where Self: Sized, Self::Output: Clone,

Available on crate feature std only.
Create a cloneable handle to this future where all handles will resolve to the same result. Read more
§

fn boxed<'a>(self) -> Pin<Box<dyn Future<Output = Self::Output> + Send + 'a>>
where Self: Sized + Send + 'a,

Available on crate feature alloc only.
Wrap the future in a Box, pinning it. Read more
§

fn boxed_local<'a>(self) -> Pin<Box<dyn Future<Output = Self::Output> + 'a>>
where Self: Sized + 'a,

Available on crate feature alloc only.
Wrap the future in a Box, pinning it. Read more
§

fn unit_error(self) -> UnitError<Self>
where Self: Sized,

§

fn never_error(self) -> NeverError<Self>
where Self: Sized,

§

fn poll_unpin(&mut self, cx: &mut Context<'_>) -> Poll<Self::Output>
where Self: Unpin,

A convenience for calling Future::poll on Unpin future types.
§

fn now_or_never(self) -> Option<Self::Output>
where Self: Sized,

Evaluates and consumes the future, returning the resulting output if the future is ready after the first call to Future::poll. Read more
§

impl<T> Instrument for T

§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided [Span], returning an Instrumented wrapper. Read more
§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<I> IntoAsyncIterator for I
where I: AsyncIterator,

Source§

type Item = <I as AsyncIterator>::Item

🔬This is a nightly-only experimental API. (async_iterator)
The type of the item yielded by the iterator
Source§

type IntoAsyncIter = I

🔬This is a nightly-only experimental API. (async_iterator)
The type of the resulting iterator
Source§

fn into_async_iter(self) -> <I as IntoAsyncIterator>::IntoAsyncIter

🔬This is a nightly-only experimental API. (async_iterator)
Converts self into an async iterator
Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<F> IntoFuture for F
where F: Future,

Source§

type Output = <F as Future>::Output

The output that the future will produce on completion.
Source§

type IntoFuture = F

Which kind of future are we turning this into?
Source§

fn into_future(self) -> <F as IntoFuture>::IntoFuture

Creates a future from a value. Read more
Source§

impl<I> IntoIterator for I
where I: Iterator,

Source§

type Item = <I as Iterator>::Item

The type of the elements being iterated over.
Source§

type IntoIter = I

Which kind of iterator are we turning this into?
Source§

fn into_iter(self) -> I

Creates an iterator from a value. Read more
§

impl<'data, I> IntoParallelRefIterator<'data> for I
where I: 'data + ?Sized, &'data I: IntoParallelIterator,

§

type Iter = <&'data I as IntoParallelIterator>::Iter

The type of the parallel iterator that will be returned.
§

type Item = <&'data I as IntoParallelIterator>::Item

The type of item that the parallel iterator will produce. This will typically be an &'data T reference type.
§

fn par_iter(&'data self) -> <I as IntoParallelRefIterator<'data>>::Iter

Converts self into a parallel iterator. Read more
§

impl<'data, I> IntoParallelRefMutIterator<'data> for I
where I: 'data + ?Sized, &'data mut I: IntoParallelIterator,

§

type Iter = <&'data mut I as IntoParallelIterator>::Iter

The type of iterator that will be created.
§

type Item = <&'data mut I as IntoParallelIterator>::Item

The type of item that will be produced; this is typically an &'data mut T reference.
§

fn par_iter_mut( &'data mut self, ) -> <I as IntoParallelRefMutIterator<'data>>::Iter

Creates the parallel iterator from self. Read more
§

impl<I> IntoResettable<String> for I
where I: Into<String>,

§

fn into_resettable(self) -> Resettable<String>

Convert to the intended resettable type
§

impl<I> IntoResettable<ValueParser> for I
where I: Into<ValueParser>,

§

fn into_resettable(self) -> Resettable<ValueParser>

Convert to the intended resettable type
Source§

impl<I> IteratorRandom for I
where I: Iterator,

Source§

fn choose<R>(self, rng: &mut R) -> Option<Self::Item>
where R: Rng + ?Sized,

Uniformly sample one element Read more
Source§

fn choose_stable<R>(self, rng: &mut R) -> Option<Self::Item>
where R: Rng + ?Sized,

Uniformly sample one element (stable) Read more
Source§

fn choose_multiple_fill<R>(self, rng: &mut R, buf: &mut [Self::Item]) -> usize
where R: Rng + ?Sized,

Uniformly sample amount distinct elements into a buffer Read more
Source§

fn choose_multiple<R>(self, rng: &mut R, amount: usize) -> Vec<Self::Item>
where R: Rng + ?Sized,

Available on crate feature alloc only.
Uniformly sample amount distinct elements into a Vec Read more
§

impl<T> Itertools for T
where T: Iterator + ?Sized,

§

fn interleave<J>( self, other: J, ) -> Interleave<Self, <J as IntoIterator>::IntoIter>
where J: IntoIterator<Item = Self::Item>, Self: Sized,

Alternate elements from two iterators until both have run out. Read more
§

fn interleave_shortest<J>( self, other: J, ) -> InterleaveShortest<Self, <J as IntoIterator>::IntoIter>
where J: IntoIterator<Item = Self::Item>, Self: Sized,

Alternate elements from two iterators until at least one of them has run out. Read more
§

fn intersperse( self, element: Self::Item, ) -> IntersperseWith<Self, IntersperseElementSimple<Self::Item>>
where Self: Sized, Self::Item: Clone,

An iterator adaptor to insert a particular value between each element of the adapted iterator. Read more
§

fn intersperse_with<F>(self, element: F) -> IntersperseWith<Self, F>
where Self: Sized, F: FnMut() -> Self::Item,

An iterator adaptor to insert a particular value created by a function between each element of the adapted iterator. Read more
§

fn get<R>(self, index: R) -> <R as IteratorIndex<Self>>::Output
where Self: Sized, R: IteratorIndex<Self>,

Returns an iterator over a subsection of the iterator. Read more
§

fn zip_longest<J>( self, other: J, ) -> ZipLongest<Self, <J as IntoIterator>::IntoIter>
where J: IntoIterator, Self: Sized,

Create an iterator which iterates over both this and the specified iterator simultaneously, yielding pairs of two optional elements. Read more
§

fn zip_eq<J>(self, other: J) -> ZipEq<Self, <J as IntoIterator>::IntoIter>
where J: IntoIterator, Self: Sized,

Create an iterator which iterates over both this and the specified iterator simultaneously, yielding pairs of elements. Read more
§

fn batching<B, F>(self, f: F) -> Batching<Self, F>
where F: FnMut(&mut Self) -> Option<B>, Self: Sized,

A “meta iterator adaptor”. Its closure receives a reference to the iterator and may pick off as many elements as it likes, to produce the next iterator element. Read more
§

fn chunk_by<K, F>(self, key: F) -> ChunkBy<K, Self, F>
where Self: Sized, F: FnMut(&Self::Item) -> K, K: PartialEq,

Available on crate feature use_alloc only.
Return an iterable that can group iterator elements. Consecutive elements that map to the same key (“runs”), are assigned to the same group. Read more
§

fn group_by<K, F>(self, key: F) -> ChunkBy<K, Self, F>
where Self: Sized, F: FnMut(&Self::Item) -> K, K: PartialEq,

👎Deprecated since 0.13.0: Use .chunk_by() instead
Available on crate feature use_alloc only.
§

fn chunks(self, size: usize) -> IntoChunks<Self>
where Self: Sized,

Available on crate feature use_alloc only.
Return an iterable that can chunk the iterator. Read more
§

fn tuple_windows<T>(self) -> TupleWindows<Self, T>
where Self: Sized + Iterator<Item = <T as TupleCollect>::Item>, T: HomogeneousTuple, <T as TupleCollect>::Item: Clone,

Return an iterator over all contiguous windows producing tuples of a specific size (up to 12). Read more
§

fn circular_tuple_windows<T>(self) -> CircularTupleWindows<Self, T>
where Self: Sized + Clone + Iterator<Item = <T as TupleCollect>::Item> + ExactSizeIterator, T: TupleCollect + Clone, <T as TupleCollect>::Item: Clone,

Return an iterator over all windows, wrapping back to the first elements when the window would otherwise exceed the length of the iterator, producing tuples of a specific size (up to 12). Read more
§

fn tuples<T>(self) -> Tuples<Self, T>
where Self: Sized + Iterator<Item = <T as TupleCollect>::Item>, T: HomogeneousTuple,

Return an iterator that groups the items in tuples of a specific size (up to 12). Read more
§

fn tee(self) -> (Tee<Self>, Tee<Self>)
where Self: Sized, Self::Item: Clone,

Available on crate feature use_alloc only.
Split into an iterator pair that both yield all elements from the original iterator. Read more
§

fn map_into<R>(self) -> MapSpecialCase<Self, MapSpecialCaseFnInto<R>>
where Self: Sized, Self::Item: Into<R>,

Convert each item of the iterator using the Into trait. Read more
§

fn map_ok<F, T, U, E>(self, f: F) -> MapSpecialCase<Self, MapSpecialCaseFnOk<F>>
where Self: Sized + Iterator<Item = Result<T, E>>, F: FnMut(T) -> U,

Return an iterator adaptor that applies the provided closure to every Result::Ok value. Result::Err values are unchanged. Read more
§

fn filter_ok<F, T, E>(self, f: F) -> FilterOk<Self, F>
where Self: Sized + Iterator<Item = Result<T, E>>, F: FnMut(&T) -> bool,

Return an iterator adaptor that filters every Result::Ok value with the provided closure. Result::Err values are unchanged. Read more
§

fn filter_map_ok<F, T, U, E>(self, f: F) -> FilterMapOk<Self, F>
where Self: Sized + Iterator<Item = Result<T, E>>, F: FnMut(T) -> Option<U>,

Return an iterator adaptor that filters and transforms every Result::Ok value with the provided closure. Result::Err values are unchanged. Read more
§

fn flatten_ok<T, E>(self) -> FlattenOk<Self, T, E>
where Self: Sized + Iterator<Item = Result<T, E>>, T: IntoIterator,

Return an iterator adaptor that flattens every Result::Ok value into a series of Result::Ok values. Result::Err values are unchanged. Read more
§

fn process_results<F, T, E, R>(self, processor: F) -> Result<R, E>
where Self: Sized + Iterator<Item = Result<T, E>>, F: FnOnce(ProcessResults<'_, Self, E>) -> R,

“Lift” a function of the values of the current iterator so as to process an iterator of Result values instead. Read more
§

fn merge<J>( self, other: J, ) -> MergeBy<Self, <J as IntoIterator>::IntoIter, MergeLte>
where Self: Sized, Self::Item: PartialOrd, J: IntoIterator<Item = Self::Item>,

Return an iterator adaptor that merges the two base iterators in ascending order. If both base iterators are sorted (ascending), the result is sorted. Read more
§

fn merge_by<J, F>( self, other: J, is_first: F, ) -> MergeBy<Self, <J as IntoIterator>::IntoIter, F>
where Self: Sized, J: IntoIterator<Item = Self::Item>, F: FnMut(&Self::Item, &Self::Item) -> bool,

Return an iterator adaptor that merges the two base iterators in order. This is much like .merge() but allows for a custom ordering. Read more
§

fn merge_join_by<J, F, T>( self, other: J, cmp_fn: F, ) -> MergeBy<Self, <J as IntoIterator>::IntoIter, MergeFuncLR<F, <F as FuncLR<Self::Item, <<J as IntoIterator>::IntoIter as Iterator>::Item>>::T>>
where J: IntoIterator, F: FnMut(&Self::Item, &<J as IntoIterator>::Item) -> T, Self: Sized,

Create an iterator that merges items from both this and the specified iterator in ascending order. Read more
§

fn kmerge(self) -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, KMergeByLt>
where Self: Sized, Self::Item: IntoIterator, <Self::Item as IntoIterator>::Item: PartialOrd,

Available on crate feature use_alloc only.
Return an iterator adaptor that flattens an iterator of iterators by merging them in ascending order. Read more
§

fn kmerge_by<F>( self, first: F, ) -> KMergeBy<<Self::Item as IntoIterator>::IntoIter, F>
where Self: Sized, Self::Item: IntoIterator, F: FnMut(&<Self::Item as IntoIterator>::Item, &<Self::Item as IntoIterator>::Item) -> bool,

Available on crate feature use_alloc only.
Return an iterator adaptor that flattens an iterator of iterators by merging them according to the given closure. Read more
§

fn cartesian_product<J>( self, other: J, ) -> Product<Self, <J as IntoIterator>::IntoIter>
where Self: Sized, Self::Item: Clone, J: IntoIterator, <J as IntoIterator>::IntoIter: Clone,

Return an iterator adaptor that iterates over the cartesian product of the element sets of two iterators self and J. Read more
§

fn multi_cartesian_product( self, ) -> MultiProduct<<Self::Item as IntoIterator>::IntoIter>
where Self: Sized, Self::Item: IntoIterator, <Self::Item as IntoIterator>::IntoIter: Clone, <Self::Item as IntoIterator>::Item: Clone,

Available on crate feature use_alloc only.
Return an iterator adaptor that iterates over the cartesian product of all subiterators returned by meta-iterator self. Read more
§

fn coalesce<F>(self, f: F) -> CoalesceBy<Self, F, NoCount>
where Self: Sized, F: FnMut(Self::Item, Self::Item) -> Result<Self::Item, (Self::Item, Self::Item)>,

Return an iterator adaptor that uses the passed-in closure to optionally merge together consecutive elements. Read more
§

fn dedup(self) -> CoalesceBy<Self, DedupPred2CoalescePred<DedupEq>, NoCount>
where Self: Sized, Self::Item: PartialEq,

Remove duplicates from sections of consecutive identical elements. If the iterator is sorted, all elements will be unique. Read more
§

fn dedup_by<Cmp>( self, cmp: Cmp, ) -> CoalesceBy<Self, DedupPred2CoalescePred<Cmp>, NoCount>
where Self: Sized, Cmp: FnMut(&Self::Item, &Self::Item) -> bool,

Remove duplicates from sections of consecutive identical elements, determining equality using a comparison function. If the iterator is sorted, all elements will be unique. Read more
§

fn dedup_with_count( self, ) -> CoalesceBy<Self, DedupPredWithCount2CoalescePred<DedupEq>, WithCount>
where Self: Sized,

Remove duplicates from sections of consecutive identical elements, while keeping a count of how many repeated elements were present. If the iterator is sorted, all elements will be unique. Read more
§

fn dedup_by_with_count<Cmp>( self, cmp: Cmp, ) -> CoalesceBy<Self, DedupPredWithCount2CoalescePred<Cmp>, WithCount>
where Self: Sized, Cmp: FnMut(&Self::Item, &Self::Item) -> bool,

Remove duplicates from sections of consecutive identical elements, while keeping a count of how many repeated elements were present. This will determine equality using a comparison function. If the iterator is sorted, all elements will be unique. Read more
§

fn duplicates(self) -> DuplicatesBy<Self, Self::Item, ById>
where Self: Sized, Self::Item: Eq + Hash,

Available on crate feature use_std only.
Return an iterator adaptor that produces elements that appear more than once during the iteration. Duplicates are detected using hash and equality. Read more
§

fn duplicates_by<V, F>(self, f: F) -> DuplicatesBy<Self, V, ByFn<F>>
where Self: Sized, V: Eq + Hash, F: FnMut(&Self::Item) -> V,

Available on crate feature use_std only.
Return an iterator adaptor that produces elements that appear more than once during the iteration. Duplicates are detected using hash and equality. Read more
§

fn unique(self) -> Unique<Self>
where Self: Sized, Self::Item: Clone + Eq + Hash,

Available on crate feature use_std only.
Return an iterator adaptor that filters out elements that have already been produced once during the iteration. Duplicates are detected using hash and equality. Read more
§

fn unique_by<V, F>(self, f: F) -> UniqueBy<Self, V, F>
where Self: Sized, V: Eq + Hash, F: FnMut(&Self::Item) -> V,

Available on crate feature use_std only.
Return an iterator adaptor that filters out elements that have already been produced once during the iteration. Read more
§

fn peeking_take_while<F>(&mut self, accept: F) -> PeekingTakeWhile<'_, Self, F>
where Self: Sized + PeekingNext, F: FnMut(&Self::Item) -> bool,

Return an iterator adaptor that borrows from this iterator and takes items while the closure accept returns true. Read more
§

fn take_while_ref<F>(&mut self, accept: F) -> TakeWhileRef<'_, Self, F>
where Self: Clone, F: FnMut(&Self::Item) -> bool,

Return an iterator adaptor that borrows from a Clone-able iterator to only pick off elements while the predicate accept returns true. Read more
§

fn take_while_inclusive<F>(self, accept: F) -> TakeWhileInclusive<Self, F>
where Self: Sized, F: FnMut(&Self::Item) -> bool,

Returns an iterator adaptor that consumes elements while the given predicate is true, including the element for which the predicate first returned false. Read more
§

fn while_some<A>(self) -> WhileSome<Self>
where Self: Sized + Iterator<Item = Option<A>>,

Return an iterator adaptor that filters Option<A> iterator elements and produces A. Stops on the first None encountered. Read more
§

fn tuple_combinations<T>(self) -> TupleCombinations<Self, T>
where Self: Sized + Clone, Self::Item: Clone, T: HasCombination<Self>,

Return an iterator adaptor that iterates over the combinations of the elements from an iterator. Read more
§

fn combinations(self, k: usize) -> Combinations<Self>
where Self: Sized, Self::Item: Clone,

Available on crate feature use_alloc only.
Return an iterator adaptor that iterates over the k-length combinations of the elements from an iterator. Read more
§

fn combinations_with_replacement( self, k: usize, ) -> CombinationsWithReplacement<Self>
where Self: Sized, Self::Item: Clone,

Available on crate feature use_alloc only.
Return an iterator that iterates over the k-length combinations of the elements from an iterator, with replacement. Read more
§

fn permutations(self, k: usize) -> Permutations<Self>
where Self: Sized, Self::Item: Clone,

Available on crate feature use_alloc only.
Return an iterator adaptor that iterates over all k-permutations of the elements from an iterator. Read more
§

fn powerset(self) -> Powerset<Self>
where Self: Sized, Self::Item: Clone,

Available on crate feature use_alloc only.
Return an iterator that iterates through the powerset of the elements from an iterator. Read more
§

fn pad_using<F>(self, min: usize, f: F) -> PadUsing<Self, F>
where Self: Sized, F: FnMut(usize) -> Self::Item,

Return an iterator adaptor that pads the sequence to a minimum length of min by filling missing elements using a closure f. Read more
§

fn with_position(self) -> WithPosition<Self>
where Self: Sized,

Return an iterator adaptor that combines each element with a Position to ease special-case handling of the first or last elements. Read more
§

fn positions<P>(self, predicate: P) -> Positions<Self, P>
where Self: Sized, P: FnMut(Self::Item) -> bool,

Return an iterator adaptor that yields the indices of all elements satisfying a predicate, counted from the start of the iterator. Read more
§

fn update<F>(self, updater: F) -> Update<Self, F>
where Self: Sized, F: FnMut(&mut Self::Item),

Return an iterator adaptor that applies a mutating function to each element before yielding it. Read more
§

fn next_tuple<T>(&mut self) -> Option<T>
where Self: Sized + Iterator<Item = <T as TupleCollect>::Item>, T: HomogeneousTuple,

Advances the iterator and returns the next items grouped in a tuple of a specific size (up to 12). Read more
§

fn collect_tuple<T>(self) -> Option<T>
where Self: Sized + Iterator<Item = <T as TupleCollect>::Item>, T: HomogeneousTuple,

Collects all items from the iterator into a tuple of a specific size (up to 12). Read more
§

fn find_position<P>(&mut self, pred: P) -> Option<(usize, Self::Item)>
where P: FnMut(&Self::Item) -> bool,

Find the position and value of the first element satisfying a predicate. Read more
§

fn find_or_last<P>(self, predicate: P) -> Option<Self::Item>
where Self: Sized, P: FnMut(&Self::Item) -> bool,

Find the value of the first element satisfying a predicate or return the last element, if any. Read more
§

fn find_or_first<P>(self, predicate: P) -> Option<Self::Item>
where Self: Sized, P: FnMut(&Self::Item) -> bool,

Find the value of the first element satisfying a predicate or return the first element, if any. Read more
§

fn contains<Q>(&mut self, query: &Q) -> bool
where Self: Sized, Self::Item: Borrow<Q>, Q: PartialEq,

Returns true if the given item is present in this iterator. Read more
§

fn all_equal(&mut self) -> bool
where Self: Sized, Self::Item: PartialEq,

Check whether all elements compare equal. Read more
§

fn all_equal_value( &mut self, ) -> Result<Self::Item, Option<(Self::Item, Self::Item)>>
where Self: Sized, Self::Item: PartialEq,

If there are elements and they are all equal, return a single copy of that element. If there are no elements, return an Error containing None. If there are elements and they are not all equal, return a tuple containing the first two non-equal elements found. Read more
§

fn all_unique(&mut self) -> bool
where Self: Sized, Self::Item: Eq + Hash,

Available on crate feature use_std only.
Check whether all elements are unique (non equal). Read more
§

fn dropping(self, n: usize) -> Self
where Self: Sized,

Consume the first n elements from the iterator eagerly, and return the same iterator again. Read more
§

fn dropping_back(self, n: usize) -> Self
where Self: Sized + DoubleEndedIterator,

Consume the last n elements from the iterator eagerly, and return the same iterator again. Read more
§

fn concat(self) -> Self::Item
where Self: Sized, Self::Item: Extend<<Self::Item as IntoIterator>::Item> + IntoIterator + Default,

Combine all an iterator’s elements into one element by using Extend. Read more
§

fn collect_vec(self) -> Vec<Self::Item>
where Self: Sized,

Available on crate feature use_alloc only.
.collect_vec() is simply a type specialization of Iterator::collect, for convenience.
§

fn try_collect<T, U, E>(self) -> Result<U, E>
where Self: Sized + Iterator<Item = Result<T, E>>, Result<U, E>: FromIterator<Result<T, E>>,

.try_collect() is more convenient way of writing .collect::<Result<_, _>>() Read more
§

fn set_from<'a, A, J>(&mut self, from: J) -> usize
where A: 'a, Self: Iterator<Item = &'a mut A>, J: IntoIterator<Item = A>,

Assign to each reference in self from the from iterator, stopping at the shortest of the two iterators. Read more
§

fn join(&mut self, sep: &str) -> String
where Self::Item: Display,

Available on crate feature use_alloc only.
Combine all iterator elements into one String, separated by sep. Read more
§

fn format(self, sep: &str) -> Format<'_, Self>
where Self: Sized,

Format all iterator elements, separated by sep. Read more
§

fn format_with<F>(self, sep: &str, format: F) -> FormatWith<'_, Self, F>
where Self: Sized, F: FnMut(Self::Item, &mut dyn FnMut(&dyn Display) -> Result<(), Error>) -> Result<(), Error>,

Format all iterator elements, separated by sep. Read more
§

fn fold_ok<A, E, B, F>(&mut self, start: B, f: F) -> Result<B, E>
where Self: Iterator<Item = Result<A, E>>, F: FnMut(B, A) -> B,

Fold Result values from an iterator. Read more
§

fn fold_options<A, B, F>(&mut self, start: B, f: F) -> Option<B>
where Self: Iterator<Item = Option<A>>, F: FnMut(B, A) -> B,

Fold Option values from an iterator. Read more
§

fn fold1<F>(self, f: F) -> Option<Self::Item>
where F: FnMut(Self::Item, Self::Item) -> Self::Item, Self: Sized,

👎Deprecated since 0.10.2: Use Iterator::reduce instead
Accumulator of the elements in the iterator. Read more
§

fn tree_reduce<F>(self, f: F) -> Option<Self::Item>
where F: FnMut(Self::Item, Self::Item) -> Self::Item, Self: Sized,

Accumulate the elements in the iterator in a tree-like manner. Read more
§

fn tree_fold1<F>(self, f: F) -> Option<Self::Item>
where F: FnMut(Self::Item, Self::Item) -> Self::Item, Self: Sized,

👎Deprecated since 0.13.0: Use .tree_reduce() instead
§

fn fold_while<B, F>(&mut self, init: B, f: F) -> FoldWhile<B>
where Self: Sized, F: FnMut(B, Self::Item) -> FoldWhile<B>,

An iterator method that applies a function, producing a single, final value. Read more
§

fn sum1<S>(self) -> Option<S>
where Self: Sized, S: Sum<Self::Item>,

Iterate over the entire iterator and add all the elements. Read more
§

fn product1<P>(self) -> Option<P>
where Self: Sized, P: Product<Self::Item>,

Iterate over the entire iterator and multiply all the elements. Read more
§

fn sorted_unstable(self) -> IntoIter<Self::Item>
where Self: Sized, Self::Item: Ord,

Available on crate feature use_alloc only.
Sort all iterator elements into a new iterator in ascending order. Read more
§

fn sorted_unstable_by<F>(self, cmp: F) -> IntoIter<Self::Item>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,

Available on crate feature use_alloc only.
Sort all iterator elements into a new iterator in ascending order. Read more
§

fn sorted_unstable_by_key<K, F>(self, f: F) -> IntoIter<Self::Item>
where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K,

Available on crate feature use_alloc only.
Sort all iterator elements into a new iterator in ascending order. Read more
§

fn sorted(self) -> IntoIter<Self::Item>
where Self: Sized, Self::Item: Ord,

Available on crate feature use_alloc only.
Sort all iterator elements into a new iterator in ascending order. Read more
§

fn sorted_by<F>(self, cmp: F) -> IntoIter<Self::Item>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,

Available on crate feature use_alloc only.
Sort all iterator elements into a new iterator in ascending order. Read more
§

fn sorted_by_key<K, F>(self, f: F) -> IntoIter<Self::Item>
where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K,

Available on crate feature use_alloc only.
Sort all iterator elements into a new iterator in ascending order. Read more
§

fn sorted_by_cached_key<K, F>(self, f: F) -> IntoIter<Self::Item>
where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K,

Available on crate feature use_alloc only.
Sort all iterator elements into a new iterator in ascending order. The key function is called exactly once per key. Read more
§

fn k_smallest(self, k: usize) -> IntoIter<Self::Item>
where Self: Sized, Self::Item: Ord,

Available on crate feature use_alloc only.
Sort the k smallest elements into a new iterator, in ascending order. Read more
§

fn k_smallest_by<F>(self, k: usize, cmp: F) -> IntoIter<Self::Item>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,

Available on crate feature use_alloc only.
Sort the k smallest elements into a new iterator using the provided comparison. Read more
§

fn k_smallest_by_key<F, K>(self, k: usize, key: F) -> IntoIter<Self::Item>
where Self: Sized, F: FnMut(&Self::Item) -> K, K: Ord,

Available on crate feature use_alloc only.
Return the elements producing the k smallest outputs of the provided function. Read more
§

fn k_largest(self, k: usize) -> IntoIter<Self::Item>
where Self: Sized, Self::Item: Ord,

Available on crate feature use_alloc only.
Sort the k largest elements into a new iterator, in descending order. Read more
§

fn k_largest_by<F>(self, k: usize, cmp: F) -> IntoIter<Self::Item>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,

Available on crate feature use_alloc only.
Sort the k largest elements into a new iterator using the provided comparison. Read more
§

fn k_largest_by_key<F, K>(self, k: usize, key: F) -> IntoIter<Self::Item>
where Self: Sized, F: FnMut(&Self::Item) -> K, K: Ord,

Available on crate feature use_alloc only.
Return the elements producing the k largest outputs of the provided function. Read more
§

fn tail(self, n: usize) -> IntoIter<Self::Item>
where Self: Sized,

Available on crate feature use_alloc only.
Consumes the iterator and return an iterator of the last n elements. Read more
§

fn partition_map<A, B, F, L, R>(self, predicate: F) -> (A, B)
where Self: Sized, F: FnMut(Self::Item) -> Either<L, R>, A: Default + Extend<L>, B: Default + Extend<R>,

Collect all iterator elements into one of two partitions. Unlike Iterator::partition, each partition may have a distinct type. Read more
§

fn partition_result<A, B, T, E>(self) -> (A, B)
where Self: Sized + Iterator<Item = Result<T, E>>, A: Default + Extend<T>, B: Default + Extend<E>,

Partition a sequence of Results into one list of all the Ok elements and another list of all the Err elements. Read more
§

fn into_group_map<K, V>(self) -> HashMap<K, Vec<V>>
where Self: Sized + Iterator<Item = (K, V)>, K: Hash + Eq,

Available on crate feature use_std only.
Return a HashMap of keys mapped to Vecs of values. Keys and values are taken from (Key, Value) tuple pairs yielded by the input iterator. Read more
§

fn into_group_map_by<K, V, F>(self, f: F) -> HashMap<K, Vec<V>>
where Self: Sized + Iterator<Item = V>, K: Hash + Eq, F: FnMut(&V) -> K,

Available on crate feature use_std only.
Return an Iterator on a HashMap. Keys mapped to Vecs of values. The key is specified in the closure. Read more
§

fn into_grouping_map<K, V>(self) -> GroupingMap<Self>
where Self: Sized + Iterator<Item = (K, V)>, K: Hash + Eq,

Available on crate feature use_std only.
Constructs a GroupingMap to be used later with one of the efficient group-and-fold operations it allows to perform. Read more
§

fn into_grouping_map_by<K, V, F>( self, key_mapper: F, ) -> GroupingMap<MapSpecialCase<Self, GroupingMapFn<F>>>
where Self: Sized + Iterator<Item = V>, K: Hash + Eq, F: FnMut(&V) -> K,

Available on crate feature use_std only.
Constructs a GroupingMap to be used later with one of the efficient group-and-fold operations it allows to perform. Read more
§

fn min_set(self) -> Vec<Self::Item>
where Self: Sized, Self::Item: Ord,

Available on crate feature use_alloc only.
Return all minimum elements of an iterator. Read more
§

fn min_set_by<F>(self, compare: F) -> Vec<Self::Item>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,

Available on crate feature use_alloc only.
Return all minimum elements of an iterator, as determined by the specified function. Read more
§

fn min_set_by_key<K, F>(self, key: F) -> Vec<Self::Item>
where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K,

Available on crate feature use_alloc only.
Return all minimum elements of an iterator, as determined by the specified function. Read more
§

fn max_set(self) -> Vec<Self::Item>
where Self: Sized, Self::Item: Ord,

Available on crate feature use_alloc only.
Return all maximum elements of an iterator. Read more
§

fn max_set_by<F>(self, compare: F) -> Vec<Self::Item>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,

Available on crate feature use_alloc only.
Return all maximum elements of an iterator, as determined by the specified function. Read more
§

fn max_set_by_key<K, F>(self, key: F) -> Vec<Self::Item>
where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K,

Available on crate feature use_alloc only.
Return all maximum elements of an iterator, as determined by the specified function. Read more
§

fn minmax(self) -> MinMaxResult<Self::Item>
where Self: Sized, Self::Item: PartialOrd,

Return the minimum and maximum elements in the iterator. Read more
§

fn minmax_by_key<K, F>(self, key: F) -> MinMaxResult<Self::Item>
where Self: Sized, K: PartialOrd, F: FnMut(&Self::Item) -> K,

Return the minimum and maximum element of an iterator, as determined by the specified function. Read more
§

fn minmax_by<F>(self, compare: F) -> MinMaxResult<Self::Item>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,

Return the minimum and maximum element of an iterator, as determined by the specified comparison function. Read more
§

fn position_max(self) -> Option<usize>
where Self: Sized, Self::Item: Ord,

Return the position of the maximum element in the iterator. Read more
§

fn position_max_by_key<K, F>(self, key: F) -> Option<usize>
where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K,

Return the position of the maximum element in the iterator, as determined by the specified function. Read more
§

fn position_max_by<F>(self, compare: F) -> Option<usize>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,

Return the position of the maximum element in the iterator, as determined by the specified comparison function. Read more
§

fn position_min(self) -> Option<usize>
where Self: Sized, Self::Item: Ord,

Return the position of the minimum element in the iterator. Read more
§

fn position_min_by_key<K, F>(self, key: F) -> Option<usize>
where Self: Sized, K: Ord, F: FnMut(&Self::Item) -> K,

Return the position of the minimum element in the iterator, as determined by the specified function. Read more
§

fn position_min_by<F>(self, compare: F) -> Option<usize>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,

Return the position of the minimum element in the iterator, as determined by the specified comparison function. Read more
§

fn position_minmax(self) -> MinMaxResult<usize>
where Self: Sized, Self::Item: PartialOrd,

Return the positions of the minimum and maximum elements in the iterator. Read more
§

fn position_minmax_by_key<K, F>(self, key: F) -> MinMaxResult<usize>
where Self: Sized, K: PartialOrd, F: FnMut(&Self::Item) -> K,

Return the postions of the minimum and maximum elements of an iterator, as determined by the specified function. Read more
§

fn position_minmax_by<F>(self, compare: F) -> MinMaxResult<usize>
where Self: Sized, F: FnMut(&Self::Item, &Self::Item) -> Ordering,

Return the postions of the minimum and maximum elements of an iterator, as determined by the specified comparison function. Read more
§

fn exactly_one(self) -> Result<Self::Item, ExactlyOneError<Self>>
where Self: Sized,

If the iterator yields exactly one element, that element will be returned, otherwise an error will be returned containing an iterator that has the same output as the input iterator. Read more
§

fn at_most_one(self) -> Result<Option<Self::Item>, ExactlyOneError<Self>>
where Self: Sized,

If the iterator yields no elements, Ok(None) will be returned. If the iterator yields exactly one element, that element will be returned, otherwise an error will be returned containing an iterator that has the same output as the input iterator. Read more
§

fn multipeek(self) -> MultiPeek<Self>
where Self: Sized,

Available on crate feature use_alloc only.
An iterator adaptor that allows the user to peek at multiple .next() values without advancing the base iterator. Read more
§

fn counts(self) -> HashMap<Self::Item, usize>
where Self: Sized, Self::Item: Eq + Hash,

Available on crate feature use_std only.
Collect the items in this iterator and return a HashMap which contains each item that appears in the iterator and the number of times it appears. Read more
§

fn counts_by<K, F>(self, f: F) -> HashMap<K, usize>
where Self: Sized, K: Eq + Hash, F: FnMut(Self::Item) -> K,

Available on crate feature use_std only.
Collect the items in this iterator and return a HashMap which contains each item that appears in the iterator and the number of times it appears, determining identity using a keying function. Read more
§

fn multiunzip<FromI>(self) -> FromI
where Self: Sized + MultiUnzip<FromI>,

Converts an iterator of tuples into a tuple of containers. Read more
§

fn try_len(&self) -> Result<usize, (usize, Option<usize>)>

Returns the length of the iterator if one exists. Otherwise return self.size_hint(). Read more
§

impl<Sp> LocalSpawnExt for Sp
where Sp: LocalSpawn + ?Sized,

§

fn spawn_local<Fut>(&self, future: Fut) -> Result<(), SpawnError>
where Fut: Future<Output = ()> + 'static,

Available on crate feature alloc only.
Spawns a task that polls the given future with output () to completion. Read more
§

impl<IT> MultiUnzip<()> for IT
where IT: Iterator<Item = ()>,

§

fn multiunzip(self)

Unzip this iterator into multiple collections.
§

impl<IT, A, FromA> MultiUnzip<(FromA,)> for IT
where IT: Iterator<Item = (A,)>, FromA: Default + Extend<A>,

§

fn multiunzip(self) -> (FromA,)

Unzip this iterator into multiple collections.
§

impl<IT, A, FromA, B, FromB> MultiUnzip<(FromA, FromB)> for IT
where IT: Iterator<Item = (A, B)>, FromA: Default + Extend<A>, FromB: Default + Extend<B>,

§

fn multiunzip(self) -> (FromA, FromB)

Unzip this iterator into multiple collections.
§

impl<IT, A, FromA, B, FromB, C, FromC> MultiUnzip<(FromA, FromB, FromC)> for IT
where IT: Iterator<Item = (A, B, C)>, FromA: Default + Extend<A>, FromB: Default + Extend<B>, FromC: Default + Extend<C>,

§

fn multiunzip(self) -> (FromA, FromB, FromC)

Unzip this iterator into multiple collections.
§

impl<IT, A, FromA, B, FromB, C, FromC, D, FromD> MultiUnzip<(FromA, FromB, FromC, FromD)> for IT
where IT: Iterator<Item = (A, B, C, D)>, FromA: Default + Extend<A>, FromB: Default + Extend<B>, FromC: Default + Extend<C>, FromD: Default + Extend<D>,

§

fn multiunzip(self) -> (FromA, FromB, FromC, FromD)

Unzip this iterator into multiple collections.
§

impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE> MultiUnzip<(FromA, FromB, FromC, FromD, FromE)> for IT
where IT: Iterator<Item = (A, B, C, D, E)>, FromA: Default + Extend<A>, FromB: Default + Extend<B>, FromC: Default + Extend<C>, FromD: Default + Extend<D>, FromE: Default + Extend<E>,

§

fn multiunzip(self) -> (FromA, FromB, FromC, FromD, FromE)

Unzip this iterator into multiple collections.
§

impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF)> for IT
where IT: Iterator<Item = (A, B, C, D, E, F)>, FromA: Default + Extend<A>, FromB: Default + Extend<B>, FromC: Default + Extend<C>, FromD: Default + Extend<D>, FromE: Default + Extend<E>, FromF: Default + Extend<F>,

§

fn multiunzip(self) -> (FromA, FromB, FromC, FromD, FromE, FromF)

Unzip this iterator into multiple collections.
§

impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG)> for IT
where IT: Iterator<Item = (A, B, C, D, E, F, G)>, FromA: Default + Extend<A>, FromB: Default + Extend<B>, FromC: Default + Extend<C>, FromD: Default + Extend<D>, FromE: Default + Extend<E>, FromF: Default + Extend<F>, FromG: Default + Extend<G>,

§

fn multiunzip(self) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG)

Unzip this iterator into multiple collections.
§

impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG, H, FromH> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH)> for IT
where IT: Iterator<Item = (A, B, C, D, E, F, G, H)>, FromA: Default + Extend<A>, FromB: Default + Extend<B>, FromC: Default + Extend<C>, FromD: Default + Extend<D>, FromE: Default + Extend<E>, FromF: Default + Extend<F>, FromG: Default + Extend<G>, FromH: Default + Extend<H>,

§

fn multiunzip(self) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH)

Unzip this iterator into multiple collections.
§

impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG, H, FromH, I, FromI> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI)> for IT
where IT: Iterator<Item = (A, B, C, D, E, F, G, H, I)>, FromA: Default + Extend<A>, FromB: Default + Extend<B>, FromC: Default + Extend<C>, FromD: Default + Extend<D>, FromE: Default + Extend<E>, FromF: Default + Extend<F>, FromG: Default + Extend<G>, FromH: Default + Extend<H>, FromI: Default + Extend<I>,

§

fn multiunzip( self, ) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI)

Unzip this iterator into multiple collections.
§

impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG, H, FromH, I, FromI, J, FromJ> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ)> for IT
where IT: Iterator<Item = (A, B, C, D, E, F, G, H, I, J)>, FromA: Default + Extend<A>, FromB: Default + Extend<B>, FromC: Default + Extend<C>, FromD: Default + Extend<D>, FromE: Default + Extend<E>, FromF: Default + Extend<F>, FromG: Default + Extend<G>, FromH: Default + Extend<H>, FromI: Default + Extend<I>, FromJ: Default + Extend<J>,

§

fn multiunzip( self, ) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ)

Unzip this iterator into multiple collections.
§

impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG, H, FromH, I, FromI, J, FromJ, K, FromK> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ, FromK)> for IT
where IT: Iterator<Item = (A, B, C, D, E, F, G, H, I, J, K)>, FromA: Default + Extend<A>, FromB: Default + Extend<B>, FromC: Default + Extend<C>, FromD: Default + Extend<D>, FromE: Default + Extend<E>, FromF: Default + Extend<F>, FromG: Default + Extend<G>, FromH: Default + Extend<H>, FromI: Default + Extend<I>, FromJ: Default + Extend<J>, FromK: Default + Extend<K>,

§

fn multiunzip( self, ) -> (FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ, FromK)

Unzip this iterator into multiple collections.
§

impl<IT, A, FromA, B, FromB, C, FromC, D, FromD, E, FromE, F, FromF, G, FromG, H, FromH, I, FromI, J, FromJ, K, FromK, L, FromL> MultiUnzip<(FromA, FromB, FromC, FromD, FromE, FromF, FromG, FromH, FromI, FromJ, FromK, FromL)> for IT
where IT: Iterator<Item = (A, B, C, D, E, F, G, H, I, J, K, L)>, FromA: Default + Extend<A>, FromB: Default + Extend<B>, FromC: Default + Extend<C>, FromD: Default + Extend<D>, FromE: Default + Extend<E>, FromF: Default + Extend<F>, FromG: Default + Extend<G>, FromH: Default + Extend<H>, FromI: Default + Extend<I>, FromJ: Default + Extend<J>, FromK: Default + Extend<K>, FromL: Default + Extend<L>,

Source§

impl<F> Pattern for F
where F: FnMut(char) -> bool,

Source§

type Searcher<'a> = CharPredicateSearcher<'a, F>

🔬This is a nightly-only experimental API. (pattern)
Associated searcher for this pattern
Source§

fn into_searcher<'a>(self, haystack: &'a str) -> CharPredicateSearcher<'a, F>

🔬This is a nightly-only experimental API. (pattern)
Constructs the associated searcher from self and the haystack to search in.
Source§

fn is_contained_in<'a>(self, haystack: &'a str) -> bool

🔬This is a nightly-only experimental API. (pattern)
Checks whether the pattern matches anywhere in the haystack
Source§

fn is_prefix_of<'a>(self, haystack: &'a str) -> bool

🔬This is a nightly-only experimental API. (pattern)
Checks whether the pattern matches at the front of the haystack
Source§

fn strip_prefix_of<'a>(self, haystack: &'a str) -> Option<&'a str>

🔬This is a nightly-only experimental API. (pattern)
Removes the pattern from the front of haystack, if it matches.
Source§

fn is_suffix_of<'a>(self, haystack: &'a str) -> bool

🔬This is a nightly-only experimental API. (pattern)
Checks whether the pattern matches at the back of the haystack
Source§

fn strip_suffix_of<'a>(self, haystack: &'a str) -> Option<&'a str>

🔬This is a nightly-only experimental API. (pattern)
Removes the pattern from the back of haystack, if it matches.
Source§

fn as_utf8_pattern(&self) -> Option<Utf8Pattern<'_>>

🔬This is a nightly-only experimental API. (pattern)
Returns the pattern as utf-8 bytes if possible.
§

impl<T> Pointable for T

§

const ALIGN: usize

The alignment of pointer.
§

type Init = T

The type for initializers.
§

unsafe fn init(init: <T as Pointable>::Init) -> usize

Initializes a with the given initializer. Read more
§

unsafe fn deref<'a>(ptr: usize) -> &'a T

Dereferences the given pointer. Read more
§

unsafe fn deref_mut<'a>(ptr: usize) -> &'a mut T

Mutably dereferences the given pointer. Read more
§

unsafe fn drop(ptr: usize)

Drops the object pointed to by the given pointer. Read more
§

impl<T> Read for T
where T: Read,

§

type Error = Error

The error type
§

fn read_exact(&mut self, data: &mut [u8]) -> Result<(), <T as Read>::Error>

Reads exactly data.len() bytes or fails
Source§

impl<P, T> Receiver for P
where P: Deref<Target = T> + ?Sized, T: ?Sized,

Source§

type Target = T

🔬This is a nightly-only experimental API. (arbitrary_self_types)
The target type on which the method may be called.
§

impl<F, T> Replacer for F
where F: FnMut(&Captures<'_>) -> T, T: AsRef<[u8]>,

§

fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut Vec<u8>)

Appends possibly empty data to dst to replace the current match. Read more
§

fn no_expansion<'r>(&'r mut self) -> Option<Cow<'r, [u8]>>

Return a fixed unchanging replacement byte string. Read more
§

fn by_ref<'r>(&'r mut self) -> ReplacerRef<'r, Self>

Returns a type that implements Replacer, but that borrows and wraps this Replacer. Read more
§

impl<F, T> Replacer for F
where F: FnMut(&Captures<'_>) -> T, T: AsRef<str>,

§

fn replace_append(&mut self, caps: &Captures<'_>, dst: &mut String)

Appends possibly empty data to dst to replace the current match. Read more
§

fn no_expansion<'r>(&'r mut self) -> Option<Cow<'r, str>>

Return a fixed unchanging replacement string. Read more
§

fn by_ref<'r>(&'r mut self) -> ReplacerRef<'r, Self>

Returns a type that implements Replacer, but that borrows and wraps this Replacer. Read more
Source§

impl<R> Rng for R
where R: RngCore + ?Sized,

Source§

fn random<T>(&mut self) -> T

Return a random value via the StandardUniform distribution. Read more
Source§

fn random_iter<T>(self) -> Iter<StandardUniform, Self, T>

Return an iterator over random variates Read more
Source§

fn random_range<T, R>(&mut self, range: R) -> T
where T: SampleUniform, R: SampleRange<T>,

Generate a random value in the given range. Read more
Source§

fn random_bool(&mut self, p: f64) -> bool

Return a bool with a probability p of being true. Read more
Source§

fn random_ratio(&mut self, numerator: u32, denominator: u32) -> bool

Return a bool with a probability of numerator/denominator of being true. Read more
Source§

fn sample<T, D>(&mut self, distr: D) -> T
where D: Distribution<T>,

Sample a new value, using the given distribution. Read more
Source§

fn sample_iter<T, D>(self, distr: D) -> Iter<D, Self, T>
where D: Distribution<T>, Self: Sized,

Create an iterator that generates values using the given distribution. Read more
Source§

fn fill<T>(&mut self, dest: &mut T)
where T: Fill + ?Sized,

Fill any type implementing Fill with random data Read more
Source§

fn gen<T>(&mut self) -> T

👎Deprecated since 0.9.0: Renamed to random to avoid conflict with the new gen keyword in Rust 2024.
Alias for Rng::random.
Source§

fn gen_range<T, R>(&mut self, range: R) -> T
where T: SampleUniform, R: SampleRange<T>,

👎Deprecated since 0.9.0: Renamed to random_range
Source§

fn gen_bool(&mut self, p: f64) -> bool

👎Deprecated since 0.9.0: Renamed to random_bool
Alias for Rng::random_bool.
Source§

fn gen_ratio(&mut self, numerator: u32, denominator: u32) -> bool

👎Deprecated since 0.9.0: Renamed to random_ratio
Source§

impl<T> RngCore for T
where T: DerefMut, <T as Deref>::Target: RngCore,

Source§

fn next_u32(&mut self) -> u32

Return the next random u32. Read more
Source§

fn next_u64(&mut self) -> u64

Return the next random u64. Read more
Source§

fn fill_bytes(&mut self, dst: &mut [u8])

Fill dest with random data. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
§

impl<M, F> Schedule<M> for F
where F: Fn(Runnable<M>),

§

fn schedule(&self, runnable: Runnable<M>, _: ScheduleInfo)

The actual scheduling procedure.
§

impl<Sp> SpawnExt for Sp
where Sp: Spawn + ?Sized,

§

fn spawn<Fut>(&self, future: Fut) -> Result<(), SpawnError>
where Fut: Future<Output = ()> + Send + 'static,

Available on crate feature alloc only.
Spawns a task that polls the given future with output () to completion. Read more
§

impl<T> StreamExt for T
where T: Stream + ?Sized,

§

fn next(&mut self) -> Next<'_, Self>
where Self: Unpin,

Creates a future that resolves to the next item in the stream. Read more
§

fn into_future(self) -> StreamFuture<Self>
where Self: Sized + Unpin,

Converts this stream into a future of (next_item, tail_of_stream). If the stream terminates, then the next item is None. Read more
§

fn map<T, F>(self, f: F) -> Map<Self, F>
where F: FnMut(Self::Item) -> T, Self: Sized,

Maps this stream’s items to a different type, returning a new stream of the resulting type. Read more
§

fn enumerate(self) -> Enumerate<Self>
where Self: Sized,

Creates a stream which gives the current iteration count as well as the next value. Read more
§

fn filter<Fut, F>(self, f: F) -> Filter<Self, Fut, F>
where F: FnMut(&Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized,

Filters the values produced by this stream according to the provided asynchronous predicate. Read more
§

fn filter_map<Fut, T, F>(self, f: F) -> FilterMap<Self, Fut, F>
where F: FnMut(Self::Item) -> Fut, Fut: Future<Output = Option<T>>, Self: Sized,

Filters the values produced by this stream while simultaneously mapping them to a different type according to the provided asynchronous closure. Read more
§

fn then<Fut, F>(self, f: F) -> Then<Self, Fut, F>
where F: FnMut(Self::Item) -> Fut, Fut: Future, Self: Sized,

Computes from this stream’s items new items of a different type using an asynchronous closure. Read more
§

fn collect<C>(self) -> Collect<Self, C>
where C: Default + Extend<Self::Item>, Self: Sized,

Transforms a stream into a collection, returning a future representing the result of that computation. Read more
§

fn unzip<A, B, FromA, FromB>(self) -> Unzip<Self, FromA, FromB>
where FromA: Default + Extend<A>, FromB: Default + Extend<B>, Self: Sized + Stream<Item = (A, B)>,

Converts a stream of pairs into a future, which resolves to pair of containers. Read more
§

fn concat(self) -> Concat<Self>
where Self: Sized, Self::Item: Extend<<Self::Item as IntoIterator>::Item> + IntoIterator + Default,

Concatenate all items of a stream into a single extendable destination, returning a future representing the end result. Read more
§

fn count(self) -> Count<Self>
where Self: Sized,

Drives the stream to completion, counting the number of items. Read more
§

fn cycle(self) -> Cycle<Self>
where Self: Sized + Clone,

Repeats a stream endlessly. Read more
§

fn fold<T, Fut, F>(self, init: T, f: F) -> Fold<Self, Fut, T, F>
where F: FnMut(T, Self::Item) -> Fut, Fut: Future<Output = T>, Self: Sized,

Execute an accumulating asynchronous computation over a stream, collecting all the values into one final result. Read more
§

fn any<Fut, F>(self, f: F) -> Any<Self, Fut, F>
where F: FnMut(Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized,

Execute predicate over asynchronous stream, and return true if any element in stream satisfied a predicate. Read more
§

fn all<Fut, F>(self, f: F) -> All<Self, Fut, F>
where F: FnMut(Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized,

Execute predicate over asynchronous stream, and return true if all element in stream satisfied a predicate. Read more
§

fn flatten(self) -> Flatten<Self>
where Self::Item: Stream, Self: Sized,

Flattens a stream of streams into just one continuous stream. Read more
§

fn flatten_unordered( self, limit: impl Into<Option<usize>>, ) -> FlattenUnorderedWithFlowController<Self, ()>
where Self::Item: Stream + Unpin, Self: Sized,

Available on crate feature alloc only.
Flattens a stream of streams into just one continuous stream. Polls inner streams produced by the base stream concurrently. Read more
§

fn flat_map<U, F>(self, f: F) -> FlatMap<Self, U, F>
where F: FnMut(Self::Item) -> U, U: Stream, Self: Sized,

Maps a stream like [StreamExt::map] but flattens nested Streams. Read more
§

fn flat_map_unordered<U, F>( self, limit: impl Into<Option<usize>>, f: F, ) -> FlatMapUnordered<Self, U, F>
where U: Stream + Unpin, F: FnMut(Self::Item) -> U, Self: Sized,

Available on crate feature alloc only.
Maps a stream like [StreamExt::map] but flattens nested Streams and polls them concurrently, yielding items in any order, as they made available. Read more
§

fn scan<S, B, Fut, F>(self, initial_state: S, f: F) -> Scan<Self, S, Fut, F>
where F: FnMut(&mut S, Self::Item) -> Fut, Fut: Future<Output = Option<B>>, Self: Sized,

Combinator similar to [StreamExt::fold] that holds internal state and produces a new stream. Read more
§

fn skip_while<Fut, F>(self, f: F) -> SkipWhile<Self, Fut, F>
where F: FnMut(&Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized,

Skip elements on this stream while the provided asynchronous predicate resolves to true. Read more
§

fn take_while<Fut, F>(self, f: F) -> TakeWhile<Self, Fut, F>
where F: FnMut(&Self::Item) -> Fut, Fut: Future<Output = bool>, Self: Sized,

Take elements from this stream while the provided asynchronous predicate resolves to true. Read more
§

fn take_until<Fut>(self, fut: Fut) -> TakeUntil<Self, Fut>
where Fut: Future, Self: Sized,

Take elements from this stream until the provided future resolves. Read more
§

fn for_each<Fut, F>(self, f: F) -> ForEach<Self, Fut, F>
where F: FnMut(Self::Item) -> Fut, Fut: Future<Output = ()>, Self: Sized,

Runs this stream to completion, executing the provided asynchronous closure for each element on the stream. Read more
§

fn for_each_concurrent<Fut, F>( self, limit: impl Into<Option<usize>>, f: F, ) -> ForEachConcurrent<Self, Fut, F>
where F: FnMut(Self::Item) -> Fut, Fut: Future<Output = ()>, Self: Sized,

Available on crate feature alloc only.
Runs this stream to completion, executing the provided asynchronous closure for each element on the stream concurrently as elements become available. Read more
§

fn take(self, n: usize) -> Take<Self>
where Self: Sized,

Creates a new stream of at most n items of the underlying stream. Read more
§

fn skip(self, n: usize) -> Skip<Self>
where Self: Sized,

Creates a new stream which skips n items of the underlying stream. Read more
§

fn fuse(self) -> Fuse<Self>
where Self: Sized,

Fuse a stream such that poll_next will never again be called once it has finished. This method can be used to turn any Stream into a FusedStream. Read more
§

fn by_ref(&mut self) -> &mut Self

Borrows a stream, rather than consuming it. Read more
§

fn catch_unwind(self) -> CatchUnwind<Self>
where Self: Sized + UnwindSafe,

Available on crate feature std only.
Catches unwinding panics while polling the stream. Read more
§

fn boxed<'a>(self) -> Pin<Box<dyn Stream<Item = Self::Item> + Send + 'a>>
where Self: Sized + Send + 'a,

Available on crate feature alloc only.
Wrap the stream in a Box, pinning it. Read more
§

fn boxed_local<'a>(self) -> Pin<Box<dyn Stream<Item = Self::Item> + 'a>>
where Self: Sized + 'a,

Available on crate feature alloc only.
Wrap the stream in a Box, pinning it. Read more
§

fn buffered(self, n: usize) -> Buffered<Self>
where Self::Item: Future, Self: Sized,

Available on crate feature alloc only.
An adaptor for creating a buffered list of pending futures. Read more
§

fn buffer_unordered(self, n: usize) -> BufferUnordered<Self>
where Self::Item: Future, Self: Sized,

Available on crate feature alloc only.
An adaptor for creating a buffered list of pending futures (unordered). Read more
§

fn zip<St>(self, other: St) -> Zip<Self, St>
where St: Stream, Self: Sized,

An adapter for zipping two streams together. Read more
§

fn chain<St>(self, other: St) -> Chain<Self, St>
where St: Stream<Item = Self::Item>, Self: Sized,

Adapter for chaining two streams. Read more
§

fn peekable(self) -> Peekable<Self>
where Self: Sized,

Creates a new stream which exposes a peek method. Read more
§

fn chunks(self, capacity: usize) -> Chunks<Self>
where Self: Sized,

Available on crate feature alloc only.
An adaptor for chunking up items of the stream inside a vector. Read more
§

fn ready_chunks(self, capacity: usize) -> ReadyChunks<Self>
where Self: Sized,

Available on crate feature alloc only.
An adaptor for chunking up ready items of the stream inside a vector. Read more
§

fn forward<S>(self, sink: S) -> Forward<Self, S>
where S: Sink<Self::Ok, Error = Self::Error>, Self: Sized + TryStream,

Available on crate feature sink only.
A future that completes after the given stream has been fully processed into the sink and the sink has been flushed and closed. Read more
§

fn split<Item>(self) -> (SplitSink<Self, Item>, SplitStream<Self>)
where Self: Sized + Sink<Item>,

Available on crate features sink and alloc only.
Splits this Stream + Sink object into separate Sink and Stream objects. Read more
§

fn inspect<F>(self, f: F) -> Inspect<Self, F>
where F: FnMut(&Self::Item), Self: Sized,

Do something with each item of this stream, afterwards passing it on. Read more
§

fn left_stream<B>(self) -> Either<Self, B>
where B: Stream<Item = Self::Item>, Self: Sized,

Wrap this stream in an Either stream, making it the left-hand variant of that Either. Read more
§

fn right_stream<B>(self) -> Either<B, Self>
where B: Stream<Item = Self::Item>, Self: Sized,

Wrap this stream in an Either stream, making it the right-hand variant of that Either. Read more
§

fn poll_next_unpin(&mut self, cx: &mut Context<'_>) -> Poll<Option<Self::Item>>
where Self: Unpin,

A convenience method for calling [Stream::poll_next] on Unpin stream types.
§

fn select_next_some(&mut self) -> SelectNextSome<'_, Self>
where Self: Unpin + FusedStream,

Returns a Future that resolves when the next item in this stream is ready. Read more
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T> ToString for T
where T: Display + ?Sized,

Source§

fn to_string(&self) -> String

Converts the given value to a String. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
§

impl<F, T, E> TryFuture for F
where F: Future<Output = Result<T, E>> + ?Sized,

§

type Ok = T

The type of successful values yielded by this future
§

type Error = E

The type of failures yielded by this future
§

fn try_poll( self: Pin<&mut F>, cx: &mut Context<'_>, ) -> Poll<<F as Future>::Output>

Poll this TryFuture as if it were a Future. Read more
§

impl<Fut> TryFutureExt for Fut
where Fut: TryFuture + ?Sized,

§

fn flatten_sink<Item>(self) -> FlattenSink<Self, Self::Ok>
where Self::Ok: Sink<Item, Error = Self::Error>, Self: Sized,

Available on crate feature sink only.
Flattens the execution of this future when the successful result of this future is a [Sink]. Read more
§

fn map_ok<T, F>(self, f: F) -> MapOk<Self, F>
where F: FnOnce(Self::Ok) -> T, Self: Sized,

Maps this future’s success value to a different value. Read more
§

fn map_ok_or_else<T, E, F>(self, e: E, f: F) -> MapOkOrElse<Self, F, E>
where F: FnOnce(Self::Ok) -> T, E: FnOnce(Self::Error) -> T, Self: Sized,

Maps this future’s success value to a different value, and permits for error handling resulting in the same type. Read more
§

fn map_err<E, F>(self, f: F) -> MapErr<Self, F>
where F: FnOnce(Self::Error) -> E, Self: Sized,

Maps this future’s error value to a different value. Read more
§

fn err_into<E>(self) -> ErrInto<Self, E>
where Self: Sized, Self::Error: Into<E>,

Maps this future’s Error to a new error type using the Into trait. Read more
§

fn ok_into<U>(self) -> OkInto<Self, U>
where Self: Sized, Self::Ok: Into<U>,

Maps this future’s Ok to a new type using the Into trait.
§

fn and_then<Fut, F>(self, f: F) -> AndThen<Self, Fut, F>
where F: FnOnce(Self::Ok) -> Fut, Fut: TryFuture<Error = Self::Error>, Self: Sized,

Executes another future after this one resolves successfully. The success value is passed to a closure to create this subsequent future. Read more
§

fn or_else<Fut, F>(self, f: F) -> OrElse<Self, Fut, F>
where F: FnOnce(Self::Error) -> Fut, Fut: TryFuture<Ok = Self::Ok>, Self: Sized,

Executes another future if this one resolves to an error. The error value is passed to a closure to create this subsequent future. Read more
§

fn inspect_ok<F>(self, f: F) -> InspectOk<Self, F>
where F: FnOnce(&Self::Ok), Self: Sized,

Do something with the success value of a future before passing it on. Read more
§

fn inspect_err<F>(self, f: F) -> InspectErr<Self, F>
where F: FnOnce(&Self::Error), Self: Sized,

Do something with the error value of a future before passing it on. Read more
§

fn try_flatten(self) -> TryFlatten<Self, Self::Ok>
where Self::Ok: TryFuture<Error = Self::Error>, Self: Sized,

Flatten the execution of this future when the successful result of this future is another future. Read more
§

fn try_flatten_stream(self) -> TryFlattenStream<Self>
where Self::Ok: TryStream<Error = Self::Error>, Self: Sized,

Flatten the execution of this future when the successful result of this future is a stream. Read more
§

fn unwrap_or_else<F>(self, f: F) -> UnwrapOrElse<Self, F>
where Self: Sized, F: FnOnce(Self::Error) -> Self::Ok,

Unwraps this future’s output, producing a future with this future’s Ok type as its Output type. Read more
§

fn into_future(self) -> IntoFuture<Self>
where Self: Sized,

Wraps a [TryFuture] into a type that implements Future. Read more
§

fn try_poll_unpin( &mut self, cx: &mut Context<'_>, ) -> Poll<Result<Self::Ok, Self::Error>>
where Self: Unpin,

A convenience method for calling [TryFuture::try_poll] on Unpin future types.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<R> TryRngCore for R
where R: RngCore + ?Sized,

Source§

type Error = Infallible

The type returned in the event of a RNG error.
Source§

fn try_next_u32(&mut self) -> Result<u32, <R as TryRngCore>::Error>

Return the next random u32.
Source§

fn try_next_u64(&mut self) -> Result<u64, <R as TryRngCore>::Error>

Return the next random u64.
Source§

fn try_fill_bytes( &mut self, dst: &mut [u8], ) -> Result<(), <R as TryRngCore>::Error>

Fill dest entirely with random data.
Source§

fn unwrap_err(self) -> UnwrapErr<Self>
where Self: Sized,

Wrap RNG with the UnwrapErr wrapper.
Source§

fn unwrap_mut(&mut self) -> UnwrapMut<'_, Self>

Wrap RNG with the UnwrapMut wrapper.
Source§

fn read_adapter(&mut self) -> RngReadAdapter<'_, Self>
where Self: Sized,

Available on crate feature std only.
Convert an RngCore to a RngReadAdapter.
§

impl<S, T, E> TryStream for S
where S: Stream<Item = Result<T, E>> + ?Sized,

§

type Ok = T

The type of successful values yielded by this future
§

type Error = E

The type of failures yielded by this future
§

fn try_poll_next( self: Pin<&mut S>, cx: &mut Context<'_>, ) -> Poll<Option<Result<<S as TryStream>::Ok, <S as TryStream>::Error>>>

Poll this TryStream as if it were a Stream. Read more
§

impl<S> TryStreamExt for S
where S: TryStream + ?Sized,

§

fn err_into<E>(self) -> ErrInto<Self, E>
where Self: Sized, Self::Error: Into<E>,

Wraps the current stream in a new stream which converts the error type into the one provided. Read more
§

fn map_ok<T, F>(self, f: F) -> MapOk<Self, F>
where Self: Sized, F: FnMut(Self::Ok) -> T,

Wraps the current stream in a new stream which maps the success value using the provided closure. Read more
§

fn map_err<E, F>(self, f: F) -> MapErr<Self, F>
where Self: Sized, F: FnMut(Self::Error) -> E,

Wraps the current stream in a new stream which maps the error value using the provided closure. Read more
§

fn and_then<Fut, F>(self, f: F) -> AndThen<Self, Fut, F>
where F: FnMut(Self::Ok) -> Fut, Fut: TryFuture<Error = Self::Error>, Self: Sized,

Chain on a computation for when a value is ready, passing the successful results to the provided closure f. Read more
§

fn or_else<Fut, F>(self, f: F) -> OrElse<Self, Fut, F>
where F: FnMut(Self::Error) -> Fut, Fut: TryFuture<Ok = Self::Ok>, Self: Sized,

Chain on a computation for when an error happens, passing the erroneous result to the provided closure f. Read more
§

fn inspect_ok<F>(self, f: F) -> InspectOk<Self, F>
where F: FnMut(&Self::Ok), Self: Sized,

Do something with the success value of this stream, afterwards passing it on. Read more
§

fn inspect_err<F>(self, f: F) -> InspectErr<Self, F>
where F: FnMut(&Self::Error), Self: Sized,

Do something with the error value of this stream, afterwards passing it on. Read more
§

fn into_stream(self) -> IntoStream<Self>
where Self: Sized,

Wraps a [TryStream] into a type that implements Stream Read more
§

fn try_next(&mut self) -> TryNext<'_, Self>
where Self: Unpin,

Creates a future that attempts to resolve the next item in the stream. If an error is encountered before the next item, the error is returned instead. Read more
§

fn try_for_each<Fut, F>(self, f: F) -> TryForEach<Self, Fut, F>
where F: FnMut(Self::Ok) -> Fut, Fut: TryFuture<Ok = (), Error = Self::Error>, Self: Sized,

Attempts to run this stream to completion, executing the provided asynchronous closure for each element on the stream. Read more
§

fn try_skip_while<Fut, F>(self, f: F) -> TrySkipWhile<Self, Fut, F>
where F: FnMut(&Self::Ok) -> Fut, Fut: TryFuture<Ok = bool, Error = Self::Error>, Self: Sized,

Skip elements on this stream while the provided asynchronous predicate resolves to true. Read more
§

fn try_take_while<Fut, F>(self, f: F) -> TryTakeWhile<Self, Fut, F>
where F: FnMut(&Self::Ok) -> Fut, Fut: TryFuture<Ok = bool, Error = Self::Error>, Self: Sized,

Take elements on this stream while the provided asynchronous predicate resolves to true. Read more
§

fn try_for_each_concurrent<Fut, F>( self, limit: impl Into<Option<usize>>, f: F, ) -> TryForEachConcurrent<Self, Fut, F>
where F: FnMut(Self::Ok) -> Fut, Fut: Future<Output = Result<(), Self::Error>>, Self: Sized,

Available on crate feature alloc only.
Attempts to run this stream to completion, executing the provided asynchronous closure for each element on the stream concurrently as elements become available, exiting as soon as an error occurs. Read more
§

fn try_collect<C>(self) -> TryCollect<Self, C>
where C: Default + Extend<Self::Ok>, Self: Sized,

Attempt to transform a stream into a collection, returning a future representing the result of that computation. Read more
§

fn try_chunks(self, capacity: usize) -> TryChunks<Self>
where Self: Sized,

Available on crate feature alloc only.
An adaptor for chunking up successful items of the stream inside a vector. Read more
§

fn try_ready_chunks(self, capacity: usize) -> TryReadyChunks<Self>
where Self: Sized,

Available on crate feature alloc only.
An adaptor for chunking up successful, ready items of the stream inside a vector. Read more
§

fn try_filter<Fut, F>(self, f: F) -> TryFilter<Self, Fut, F>
where Fut: Future<Output = bool>, F: FnMut(&Self::Ok) -> Fut, Self: Sized,

Attempt to filter the values produced by this stream according to the provided asynchronous closure. Read more
§

fn try_filter_map<Fut, F, T>(self, f: F) -> TryFilterMap<Self, Fut, F>
where Fut: TryFuture<Ok = Option<T>, Error = Self::Error>, F: FnMut(Self::Ok) -> Fut, Self: Sized,

Attempt to filter the values produced by this stream while simultaneously mapping them to a different type according to the provided asynchronous closure. Read more
§

fn try_flatten_unordered( self, limit: impl Into<Option<usize>>, ) -> TryFlattenUnordered<Self>
where Self::Ok: TryStream + Unpin, <Self::Ok as TryStream>::Error: From<Self::Error>, Self: Sized,

Available on crate feature alloc only.
Flattens a stream of streams into just one continuous stream. Produced streams will be polled concurrently and any errors will be passed through without looking at them. If the underlying base stream returns an error, it will be immediately propagated. Read more
§

fn try_flatten(self) -> TryFlatten<Self>
where Self::Ok: TryStream, <Self::Ok as TryStream>::Error: From<Self::Error>, Self: Sized,

Flattens a stream of streams into just one continuous stream. Read more
§

fn try_fold<T, Fut, F>(self, init: T, f: F) -> TryFold<Self, Fut, T, F>
where F: FnMut(T, Self::Ok) -> Fut, Fut: TryFuture<Ok = T, Error = Self::Error>, Self: Sized,

Attempt to execute an accumulating asynchronous computation over a stream, collecting all the values into one final result. Read more
§

fn try_concat(self) -> TryConcat<Self>
where Self: Sized, Self::Ok: Extend<<Self::Ok as IntoIterator>::Item> + IntoIterator + Default,

Attempt to concatenate all items of a stream into a single extendable destination, returning a future representing the end result. Read more
§

fn try_buffer_unordered(self, n: usize) -> TryBufferUnordered<Self>
where Self::Ok: TryFuture<Error = Self::Error>, Self: Sized,

Available on crate feature alloc only.
Attempt to execute several futures from a stream concurrently (unordered). Read more
§

fn try_buffered(self, n: usize) -> TryBuffered<Self>
where Self::Ok: TryFuture<Error = Self::Error>, Self: Sized,

Available on crate feature alloc only.
Attempt to execute several futures from a stream concurrently. Read more
§

fn try_poll_next_unpin( &mut self, cx: &mut Context<'_>, ) -> Poll<Option<Result<Self::Ok, Self::Error>>>
where Self: Unpin,

A convenience method for calling [TryStream::try_poll_next] on Unpin stream types.
§

fn into_async_read(self) -> IntoAsyncRead<Self>
where Self: Sized + TryStreamExt<Error = Error>, Self::Ok: AsRef<[u8]>,

Available on crate features io and std only.
Adapter that converts this stream into an AsyncBufRead. Read more
§

fn try_all<Fut, F>(self, f: F) -> TryAll<Self, Fut, F>
where Self: Sized, F: FnMut(Self::Ok) -> Fut, Fut: Future<Output = bool>,

Attempt to execute a predicate over an asynchronous stream and evaluate if all items satisfy the predicate. Exits early if an Err is encountered or if an Ok item is found that does not satisfy the predicate. Read more
§

fn try_any<Fut, F>(self, f: F) -> TryAny<Self, Fut, F>
where Self: Sized, F: FnMut(Self::Ok) -> Fut, Fut: Future<Output = bool>,

Attempt to execute a predicate over an asynchronous stream and evaluate if any items satisfy the predicate. Exits early if an Err is encountered or if an Ok item is found that satisfies the predicate. Read more
§

impl<F, T, E> TypedValueParser for F
where F: Fn(&str) -> Result<T, E> + Clone + Send + Sync + 'static, E: Into<Box<dyn Error + Send + Sync>>, T: Send + Sync + Clone,

§

type Value = T

Argument’s value type
§

fn parse_ref( &self, cmd: &Command, arg: Option<&Arg>, value: &OsStr, ) -> Result<<F as TypedValueParser>::Value, Error>

Parse the argument value Read more
§

fn parse_ref_( &self, cmd: &Command, arg: Option<&Arg>, value: &OsStr, _source: ValueSource, ) -> Result<Self::Value, Error>

Parse the argument value Read more
§

fn parse( &self, cmd: &Command, arg: Option<&Arg>, value: OsString, ) -> Result<Self::Value, Error>

Parse the argument value Read more
§

fn parse_( &self, cmd: &Command, arg: Option<&Arg>, value: OsString, _source: ValueSource, ) -> Result<Self::Value, Error>

Parse the argument value Read more
§

fn possible_values( &self, ) -> Option<Box<dyn Iterator<Item = PossibleValue> + '_>>

Reflect on enumerated value properties Read more
§

fn map<T, F>(self, func: F) -> MapValueParser<Self, F>
where T: Send + Sync + Clone, F: Fn(Self::Value) -> T + Clone,

Adapt a TypedValueParser from one value to another Read more
§

fn try_map<T, E, F>(self, func: F) -> TryMapValueParser<Self, F>
where F: Fn(Self::Value) -> Result<T, E> + Clone + Send + Sync + 'static, T: Send + Sync + Clone, E: Into<Box<dyn Error + Send + Sync>>,

Adapt a TypedValueParser from one value to another Read more
§

impl<V, T> VZip<V> for T
where V: MultiLane<T>,

§

fn vzip(self) -> V

§

impl<F> Visit for F
where F: FnMut(&Field, &dyn Debug),

§

fn record_debug(&mut self, field: &Field, value: &dyn Debug)

Visit a value implementing fmt::Debug.
§

fn record_f64(&mut self, field: &Field, value: f64)

Visit a double-precision floating point value.
§

fn record_i64(&mut self, field: &Field, value: i64)

Visit a signed 64-bit integer value.
§

fn record_u64(&mut self, field: &Field, value: u64)

Visit an unsigned 64-bit integer value.
§

fn record_i128(&mut self, field: &Field, value: i128)

Visit a signed 128-bit integer value.
§

fn record_u128(&mut self, field: &Field, value: u128)

Visit an unsigned 128-bit integer value.
§

fn record_bool(&mut self, field: &Field, value: bool)

Visit a boolean value.
§

fn record_str(&mut self, field: &Field, value: &str)

Visit a string value.
§

fn record_bytes(&mut self, field: &Field, value: &[u8])

Visit a byte slice.
§

fn record_error(&mut self, field: &Field, value: &(dyn Error + 'static))

Available on crate feature std only.
Records a type implementing Error. Read more
§

impl<T> WithSubscriber for T

§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a [WithDispatch] wrapper. Read more
§

impl<T> Write for T
where T: Write,

§

type Error = Error

The error type
§

fn write_all(&mut self, data: &[u8]) -> Result<(), <T as Write>::Error>

Writes all bytes from data or fails
§

fn flush(&mut self) -> Result<(), <T as Write>::Error>

Flushes all output
Source§

impl<T> CryptoRng for T
where T: DerefMut, <T as Deref>::Target: CryptoRng,

Source§

impl<T> DeserializeOwned for T
where T: for<'de> Deserialize<'de>,

Source§

impl<T> NumBytes for T
where T: Debug + AsRef<[u8]> + AsMut<[u8]> + PartialEq + Eq + PartialOrd + Ord + Hash + Borrow<[u8]> + BorrowMut<[u8]> + ?Sized,

Source§

impl<R> TryCryptoRng for R
where R: CryptoRng + ?Sized,